New Book: ‘Water, Energy, and Environment – A Primer’

After a long hiatus from blogging while I worked on a new book, I am pleased to announce that the book ‘Water, Energy, and Environment – A Primer’ will be published by International Water Association Publishing (IWAP) on February 18th (2019). It will be available in both printed and digital form, and the digital version will be downloadable for free as an Open Access (OA) document.

To access the free digital version go to IWAP’s OA website on Twitter: https://twitter.com/IWAP_OA.

Attached below is front material from the book, its preface and table of contents. Designed to serve as a basic and easily read introduction to the linked topics of water, energy, and environment, it is just under 200 pages in length, a convenient size to throw into a folder, a briefcase, or a backpack. Its availability as an OA document means that people all over the world with access to the internet will have access to the book and its 10 chapters.

With the completion of the book I plan to return to a regular schedule of blogging.
…………………………..
Contents
Preface ………………………………….. xi
Acknowledgement ……………………….. xv
Acronyms ……………………………… xvii
Epigraph ……………………………….. xxi
Chapter 1
Water and its global context …………………. 1
1.1 Earth’s Water Resources . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Saline Water and Desalination Processes . . . . . . . . . . . 2
1.3 Energy Requirements and Costs of Desalination . . . . . 5
1.4 Demand for Freshwater . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Implications of Limited Access to Freshwater . . . . . . . . . 9
1.6 Actions to Increase Access to Freshwater . . . . . . . . . . 10
1.7 Gender Equity Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Chapter 2
Energy and its global context ……………….. 13
2.1 Energy’s Role in Society . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Energy Realities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 What is Energy? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Energy Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Important questions . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 How is energy used? . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Electrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Chapter 3
Exploring the linkage between water
and energy ……………………………….. 23
3.1 Indirect Linkages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 The Policy Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 The Conundrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Addressing the Conundrum . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 The Need for Partnership . . . . . . . . . . . . . . . . . . . . . . . . . 27
Chapter 4
Energy production and its consequences for
water and the environment …………………. 29
4.1 Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 More on Climate Change . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Environment and Religion . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 The theocentric worldview . . . . . . . . . . . . . . . . . 33
4.3.2 The anthropocentric worldview . . . . . . . . . . . . . 34
4.3.3 Other worldviews . . . . . . . . . . . . . . . . . . . . . . . . . 34
Chapter 5
Energy options ……………………………. 37
5.1 Fossil Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Nuclear Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Geothermal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 The Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5.1 Energy demand . . . . . . . . . . . . . . . . . . . . . . . . . . 40
vi Water, Energy, and Environment – A Primer
5.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5.3 Saving energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5.4 Accelerating implementation . . . . . . . . . . . . . . . 43
5.5.5 Energy Star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5.6 The lighting revolution . . . . . . . . . . . . . . . . . . . . . 45
5.5.7 Energy efficiency in buildings . . . . . . . . . . . . . . . 48
5.5.7.1 Zero energy buildings . . . . . . . . . . . . . 48
5.5.7.2 Electrochromic windows . . . . . . . . . . . 52
5.6 Energy Efficiency in Industry . . . . . . . . . . . . . . . . . . . . . . 54
5.7 Energy Efficiency in Transportation . . . . . . . . . . . . . . . . 56
Chapter 6
Fossil fuels ………………………………. 61
6.1 Coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.1 Carbon capture and sequestration . . . . . . . . . . 63
6.1.2 A conundrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Petroleum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.1 Oil spills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.2 Peak oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.1 Methane hydrates . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.2 Fracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Chapter 7
Nuclear power ……………………………. 85
7.1 Nuclear Fission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.1 Fission fundamentals . . . . . . . . . . . . . . . . . . . . . . 85
7.1.2 Introduction to nuclear issues . . . . . . . . . . . . . . . 87
7.1.3 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Nuclear Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2.1 Fusion fundamentals . . . . . . . . . . . . . . . . . . . . . . 91
7.2.2 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.3 Barriers to Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2.4 Pros and cons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2.5 Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Chapter 8
Renewable energy ………………………… 97
8.1 The Sun’s Energy Source and Radiation
Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2 Direct Solar Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.2.1 Photovoltaics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.2.2 Concentrating solar power (CSP) . . . . . . . . . . 108
8.2.2.1 Power tower . . . . . . . . . . . . . . . . . . . . 109
8.2.2.2 Linear concentrator . . . . . . . . . . . . . . 110
8.2.2.3 Dish engine . . . . . . . . . . . . . . . . . . . . . 111
8.2.2.4 CSTP history . . . . . . . . . . . . . . . . . . . 112
8.2.2.5 Advantages and disadvantages . . . 112
8.2.2.6 Thermal storage . . . . . . . . . . . . . . . . . 113
8.2.2.7 Current status . . . . . . . . . . . . . . . . . . . 114
8.2.2.8 Concentrating photovoltaics (CPV) . 115
8.3 Solar Power Satellite (SPS) System . . . . . . . . . . . . . . 116
8.4 Hydropower and Wind Energy . . . . . . . . . . . . . . . . . . . 119
8.4.1 Hydropower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.4.2 Wind energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.4.2.1 Onshore wind . . . . . . . . . . . . . . . . . . . 121
8.4.2.2 History . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.4.2.3 An onshore limitation . . . . . . . . . . . . . 124
8.4.2.4 Offshore wind . . . . . . . . . . . . . . . . . . . 125
8.5 Biomass Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.5.1 Sources of biomass . . . . . . . . . . . . . . . . . . . . . . 129
8.5.2 Wood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.5.3 Biofuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.5.4 Algae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.5.5 Biochar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.5.6 The future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.6 Geothermal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.6.1 Sources of geothermal energy . . . . . . . . . . . . . 134
8.6.2 Manifestations of geothermal energy . . . . . . . 135
8.6.3 Uses of geothermal energy . . . . . . . . . . . . . . . . 135
8.6.3.1 Geothermal power generation . . . . . 136
8.6.3.2 Ground-source heat pumps . . . . . . . 138
8.6.4 An unusual source of geothermal energy . . . . 140
Ocean Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.7.1 Wave energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.7.1.1 Wave energy conversion
devices . . . . . . . . . . . . . . . . . . . . . . . . 142
8.7.1.2 Potential and pros and cons . . . . . . . 143
8.7.2 Ocean current energy . . . . . . . . . . . . . . . . . . . . 144
8.7.3 Tidal energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.7.3.1 Barrage . . . . . . . . . . . . . . . . . . . . . . . . 146
8.7.3.2 History . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.7.3.3 Environmental impacts . . . . . . . . . . . 147
8.7.4 Ocean thermal energy conversion (OTEC) . . 147
8.7.4.1 Barriers . . . . . . . . . . . . . . . . . . . . . . . . 148
8.7.4.2 OTEC technologies . . . . . . . . . . . . . . 148
8.7.4.3 Other cold water applications . . . . . . 149
8.7.4.4 OTEC R&D . . . . . . . . . . . . . . . . . . . . . 149
Chapter 9
Energy storage …………………………… 151
9.1 Storage and Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.2 Types of Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.2.1 Traditional and advanced batteries . . . . . . . . . 153
9.2.1.1 Lead–acid . . . . . . . . . . . . . . . . . . . . . . 153
9.2.1.2 Sodium sulfur . . . . . . . . . . . . . . . . . . . 153
9.2.1.3 Nickel–cadmium . . . . . . . . . . . . . . . . . 154
9.2.1.4 Lithium-ion . . . . . . . . . . . . . . . . . . . . . 154
9.2.1.5 Supercapacitors . . . . . . . . . . . . . . . . . 155
9.2.2 Flow batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.2.3 Flywheels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.2.4 Superconducting magnetic energy
storage (SMES) . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.2.5 Compressed air energy storage (CAES) . . . . 159
9.2.6 Pumped storage . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.2.7 Thermal storage . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.4 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.5 Fundamental Change . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Chapter 10
Policy considerations …………………….. 165
10.1 Important Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
10.1.1 Is there a physical basis for understanding
global warming and climate change? . . . . . . 166
10.1.2 Is there documented evidence for global
warming and climate change? . . . . . . . . . . . . 168
10.1.3 Can global warming and climate change be
attributed to human activities, and what are
those activities? . . . . . . . . . . . . . . . . . . . . . . . . 170
10.1.4 What are the potential short- and long-term
impacts of global warming and climate
change with respect to water supply,
environment, and health? What is the
anticipated time scale for these
impacts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10.1.5 What can be done to mitigate the onset
and potential impacts of global warming
and climate change? . . . . . . . . . . . . . . . . . . . . 179
References ……………………………… 183
Index …………………………………… 189

……………………

Preface
This book springs from my strong conviction that clean water and clean energy are the critical elements of long-term global sustainable development. I also believe that we are experiencing the beginning of an energy revolution in these early years of the 21st century. Providing clean water requires energy, and providing clean energy is essential to reducing the environmental impacts of energy production and use. Thus, I see a nexus – a connection, a causal link – among water, energy, and environment. In recent years we have adopted the terminology of the water-energy nexus for the intimate relationship between water and energy, and similarly we can apply the term nexus to the close connections among water, energy, and environment. Thisuse of the term nexus can be, and has been, extended to include the related issues of food production and health. Dealing with, and writing about, a two-element nexus is difficult enough. In this book, I will limit my analysis and discussion to the three-element water -energy-environment nexus and leave the discussion of other possible nexus elements to those more qualified to comment.

This book also springs from my observation that while there are many existing books of a more-or-less technical nature on the three elements of this nexus, a book addressing each of them and their interdependencies in a college-level primer for a broad global and multidisciplinary audience would be valuable. Consideration of these and related issues, and options for addressing them, will be priorities for all levels of government. They will also be priorities for many levels of the
private sector in the decades ahead, both in developing and developed nations. A handbook-style primer that provides an easily read and informative introduction to, and overview of, these issues will contribute broadly to public education. It will assist governments and firms in carrying out their responsibilities to provide needed services and goods in a sustainable manner, and help to encourage young people to enter these fields. It will serve as an excellent mechanism for exposure of experts in other fields to the issues associated with the water-energy-environment nexus. Further, in addition to the audiences mentioned above, target audiences include economists and others in the finance communities who will analyze and provide the needed investment funds, and those in the development community responsible for planning and delivering services to underserved populations.
The book is organized as follows: the first chapter will be devoted to the concept of nexus and how the three elements, water, energy, and environment, are inextricably linked. This recognition leads to the conclusion that if society is to optimize their contributions to human and planetary welfare they must be addressed jointly. No longer must policy for each of these elements be considered in its own silo. Chapters 2 and 3 will be devoted to spelling out global contexts for water and energy issues, respectively. Chapter 4, on related environmental issues, will address the issues of water contamination, oil spills, fracking, radioactive waste storage, and global warming/
climate change. Chapter 5 will be a discussion of energy efficiency – i.e., the wise use of energy – and its role in limiting energy demand and its associated benefits. Chapter 6 will focus on the basics of fossil fuels – coal, oil, natural gas – which today dominate global energy demand. Chapter 7 will discuss nuclear-fission-powered electricity production, which today accounts for 10% of global electricity. It will also discuss the prospects for controlled nuclear fusion. Chapter 8 will discuss the broad range of renewable energy technologies – wind, solar,hydropower, biomass, geothermal, ocean energy – which are the basis of the now rapidly emerging energy revolution. Chapter 9 will discuss the closely related issue of energy storage. Finally, Chapter 10 will address
policy issues associated with water, energy, and environment, discuss policy history and options, and provide recommendations.

‘The Sun Is Rising in Africa and the Middle East: On the Path to a Solar Energy’ Future’ Is now available

ON March 26, 2018 Pan Stanford Publishing released the 9th book in its renewable energy series: ‘The Sun Is Rising in Africa and the Middle East: On the Path to a Solar Energy Future’. It was authored by Peter Varadi, Frank Wouters, and me, and includes important chapters by contributors Anil Cabraal, Richenda Van Leeuwen, and Wolfgang Palz. It is available in a paperback, Kindle, and digital format and can be found on several bookseller websites.

Summary (from back cover of book)
Both Africa and the Middle East are blessed with enormous solar energy resources. Electrification is an urgent need in Africa, where many of its 54 countries are among the world’s fastest-growing economies, but where half the population still has no access to electricity. Solar energy is seen as the fastest and cheapest path to addressing this need. Oil-rich countries in the Middle East are turning to solar energy to meet the growing domestic demand for electricity, freeing up hydrocarbons for export. This book describes the energy transition in Africa and the Middle East, from dependence on fossil fuels to increasing reliance on solar energy. The authors were assisted by the contributions of top experts Wolfgang Palz, Anil Cabraal, and Richenda Van Leeuwen in their efforts to provide a sound basis for understanding where solar energy is heading in these two important global regions.

I also include here the book’s more expansive Epilogue:

Epilogue

An energy transition that took its first tentative steps in the latter part of the 20th century is now unfolding rapidly in the 21st century. It will have a major impact on Africa and the Middle East along with every other part of the world. It is a transition from dependence on carbon-based fuels such as coal, oil, and natural gas to the utilization of renewable energy technologies such as solar, wind, biomass, geothermal, hydropower, and ocean technologies. All, but geothermal, which is derived from the radioactive decay heat in the core of the earth, and tidal energy caused by the moon, are direct or indirect forms of solar energy. Just as we have experienced a fossil fuel era for the past few hundred years—today the world is still more than 80% dependent on such fuels—we are now embarking on a solar energy era that taps into the enormous amounts of energy received by the earth from its sun 150 million kilometers away. To put this in context, while the earth intercepts approximately 6 million exajoules of solar radiation each year (1 exajoule = 1018 joules), and the total global energy consumption is about 600 exajoules, the fraction of the sun’s radiated energy intercepted by the earth’s disk is only 4 parts in 10 billion. The issue before us is how to utilize this diffuse energy source cost-effectively and meet, in an environmentally friendly way, the needs of an expanding global population

We are transitioning from relying on ever-scarcer sources of fossil energy to an era of unlimited, clean, and cheap energy, brought about by modern technology. This transition, which can also be seen as an energy revolution, has major implications for bringing energy services not only to urban and peri-urban areas of Africa and the ‘Middle East but also to those rural, off-grid areas currently without access to electricity. Both Africa and the Middle East are blessed with enormous solar resources, which are just beginning to be tapped, providing an opportunity to improve the lives of hundreds of millions of people. Efficient and cost-effective solar solutions and novel business models enable previously unserved people to leapfrog straight into the future of energy. This book explores some of these opportunities that will transform Africa and the Middle East in the decades ahead. It is an exciting time in the energy history of the world, and Africa and the Middle East will be important playing fields in creating that new history.

A New Book On Solar Energy In Africa and the Middle East

I have not posted on this blog web site for a while because my writing efforts were diverted to helping create a new book entitled ‘The Sun Is Rising In Africa and the Middle East: On the Road to a Solar Energy Future”. The book went to the printer earlier this week and should be available in printed form shortly. A digital version is also in the works. The book has three authors and three additional contributors, each bringing a rich perspective and set of experiences to the discussion. To whet your appetitites I include below the first few pages of the manuscript, including the Table of Contents. More information coming when the book is actually available for sale.
……………………….

THE SUN IS RISING
IN AFRICA AND THE MIDDLE EAST
On the Road to a Solar Energy Future

Peter F. Varadi | Frank Wouters | Allan R. Hoffman
Contributors
Wolfgang Palz
Anil Cabraal
Richenda Van Leeuwen

Contents

Preface​xi
Introduction​1
1.​Solar Energy in Africa and in the Middle East​3
1.1​An Overview of Energy Production and
Consumption in Africa and the Middle East​4
1.1.1​Africa​4
1.1.2​The Middle East​9
1.2​The Role of Solar Energy in Africa and in the
Middle East​13
2.​Solar Technologies for Electricity Generation​19
2.1​Solar Energy to Electricity: Solar cells​20
2.1.1​PV Modules Made of Solar Cells Created on
Si Wafers​24
2.1.2​Thin-Film PV Modules​27
2.1.3​Utilization of Various PV Production
Technologies​28
2.1.4​Solar PV Systems​28
2.2​Concentrating Thermal Solar Power Systems​31
2.3​Hybrid Solar Systems​35
3.​Electric Grid Issues in Africa and the Middle East​39
3.1​Introduction​40
3.2​Mini-grids​41
3.2.1​Devergy​42
3.2.2​Donor Support for Mini-Grids​43
3.2.3​Central vs. Individual Uses​43
3.3​Regional Power Pools in Africa​46
3.4​Gulf Cooperation Council Interconnection Authority​50
3.4.1​Middle East​50
3.4.2​GCCIA​50
3.4.3​GCCIA and Renewable Energy​52
4.​Regional and International Solar Initiatives​55
4.1​Introduction​56
4.2​Introduction to the European Development Aid:
A Personal Recollection​57
Wolfgang Palz
4.3​U.S. Energy Development Assistance to Africa and
the Middle East​63
4.3.1​Africa​63
4.3.2​Middle East​66
4.4​Lighting Africa: Evolution of World Bank Support
for Solar in Africa​68
Anil Cabraal
4.4.1​In the Beginning​68
4.4.2​Evolution​71
4.4.3​Solar PV in Africa​74
4.4.4​Lighting Africa​78
4.4.5​The Lighting Africa Program​80
4.4.6​Elements of Lighting Africa Program​81
4.4.7​Lessons Learned​84
4.4.8​The Future​86
4.4.9​Paris Climate Agreement (2015)​87
4.4.10 Climate Change Action Plan 2016-2020​88
4.4.11 IFC Scaling Solar​90
4.4.12 World Bank Off-grid Solar Projects​91
4.5​The Africa Clean Energy Corridor​93
4.5.1​The Issue at Hand​96
4.5.2​Planning​97
4.5.3​Resource Assessment​98
4.5.4​Access to Finance​99
4.5.5​Status and Way Forward​99
4.6​Global Energy Transfer Feed-in Tariff​102
4.6.1​Hydropower Projects​107
4.6.2​Cogeneration (Biomass: Bagasse from
Sugar Production)​108
4.6.3​Solar PV Projects​109
4.6.3.1​Soroti solar PV project​109
4.6.3.2​Tororo solar PV project​110
4.6.4​Wind Energy Projects​111
4.6.5​Conclusion​111
4.6.6​The Future of the GET FiT Program​112
4.6.6.1​Zambia​112
4.6.6.2​Namibia​112
4.6.6.3​Mozambique​113
4.7​Deserts as a Source of Electricity​114
5.​Existing and Emerging Solar PV Markets​119
5.1​Introduction​120
5.2​Water Pumping Utilizing Solar Electricity​121
5.2.1​Africa​126
5.2.2​Middle East​128
5.3​Solar Energy and Clean Water​131
5.3.1​Desalination​131
5.3.2​Disinfection​133
5.4​Off-Grid Telecom Towers​134
5.4.1​Off-Grid or Bad-Grid?​134
5.4.2​Tower operators​135
5.4.3​Renewable Energy Towers​136
5.4.4​Tower ESCOs​137
5.5​Internet with PV​139
5.5.1​Internet in Africa​139
5.5.2​NICE, the Gambia​140
5.6​Solar Energy and Mining​143
5.7​Tele-Medicine and Tele-Education​146
6.​Financing: The Key to Africa and the Middle East’s
Solar Energy Future​151
6.1​Introduction​152
6.2​Solar for Energy Access in Africa​153
Richenda Van Leeuwen
6.2.1​“Below,” “Beyond,” and “Off” the Grid:
Powering Energy Access​154
6.2.2​Why Solar for Energy Access in Africa?​156
6.2.3​Why Hasn’t the Grid Been Extended
across Africa?​156
6.2.4​Global Catalysts: Renewed Attention at
the UN and Beyond​157
6.2.5​Market Expansion​160
6.2.6​Future Directions​162
6.3​Financing Solar in Africa and the Middle East​164
6.3.1​Size Matters​165
6.3.2​Risk​167
6.3.3​Financing Off-Grid​167
6.4​Pay-As-You-Go and Community Solar​170
6.4.1​Where the Grid Doesn’t Reach​170
6.4.2​Solar Products​170
6.4.3​Solar Home Systems​174
6.4.4​M-Kopa​174
6.5​Large-Scale Auctions​178
6.5.1​Introduction​178
6.5.2​Sealed-Bid Auction​179
6.5.3​Descending Clock Auctions​179
6.5.4​Hybrid Auctions​179
6.5.5​South Africa​180
6.5.6​IFC’s Scaling Solar​182
6.5.7​Zambia​184
6.5.8​Epilogue​185
7.​Local Value Creation​187
7.1​Local Value Creation: Analysis​188
7.1.1​Local Content Requirements​189
7.1.2​Discussion​190
7.2​Nascent Manufacturing Sector​192
7.2.1​Fosera​193
7.2.2​Solar Manufacturing in the Middle East​196
7.2.3​Noor Solar Technologies​197
8.​Current and Future Solar Programs in Africa and in the
Middle East​199
8.1​Introduction​200
8.2​Africa​201
8.2.1​Electricity in Sub-Saharan Africa​202
8.2.2​Nigeria​204
8.2.2.1​Large grid-connected projects
in Nigeria​205
8.2.2.2​Feed-in tariffs​206
8.2.2.3​Net metering​206
8.2.2.4​Other solar applications​207
8.2.2.5​Discussion​207
8.2.3​Uganda​208
8.2.4​Namibia​210
8.2.4.1​Utilization of renewable energy
to produce electricity​212
8.2.4.2​Biomass​212
8.2.4.3​Wind​213
8.2.4.4​Concentrated Solar Power (CSP)​213
8.2.4.5​PV Systems​213
8.2.4.6​Commercial and other
organizations​216
8.2.4.7​Summary​218
8.2.5​Senegal​218
8.2.5.1​Impact of solar home systems
in Senegal​219
8.2.5.2​Solar energy in the Middle East
and North Africa​220
8.2.6​Morocco​221
8.2.7​Egypt​223
8.3​The Middle East​225
8.3.1​Jordan​225
8.3.2​United Arab Emirates​225
8.3.3​Saudi Arabia​228
8.4​Into the Future​231
Epilogue​233
Glossary​235
About the Authors​239
About the Contributors​241
Index​243

Recognizing the Water-Energy Nexus

The following article was published recently on Wiley’s online journal Global Challenges. It serves as the prologue to a special issue on water and energy issues that was edited by Gustaf Olsson and Perer Lund. It discusses, in a personal way, my professional involvement with these strongly related issues.
……………………………
Water–Energy Nexus
Global Challenges Special Issue on Water and Energy

Prologue: Recognizing the Water-Energy Nexus: A Personal Recollection
By Allan Hoffman

My first professional contact with water issues came in August 1999 when I was invited to represent the U.S. Department of Energy (DOE), my employer, at a meeting in Amman, Jordan. The meeting was to plan a major Middle East water conference for later that year in Amman that would involve King Hussein of Jordan, President of the Palestinian Authority (PA) Yasser Arafat, and Prime Minister Ehud Barak of Israel. The motivation for the conference was clear—U.S. President Bill Clinton, assisted by King Hussein, was actively engaged in Middle East peace talks with the Israelis and the Palestinians and water was a principal issue in these negotiations. The planning meeting, to take place a few weeks later in mid-September, was to set the stage for a meaningful dialogue on water that would advance the peace process.

I remember well the moment I received the invitation because of my immediate reaction to Gene DeLaTorre, who delivered the invitation on behalf of DOE’s Assistant Secretary for Policy: “Why me? I don’t know a damn thing about water except what I read in the papers.” Gene, whom I had not known previously but subsequently became a good friend, gave me the three reasons I was targeted: I was a senior DOE official, an expert on renewable energy, which was recognized as part of the solution, and had considerable experience through my work on renewable energy dealing with senior officials in other governments. Not having a good reason to say no, and interested in doing what I could to help the peace process, I said yes and put myself on a fast learning curve.

That learning curve included lots of reading on global water fundamentals, the Middle East water situation, desalination, and meetings with former government and current think tank officials with experience in the Middle East. Less than a month after receiving and accepting the invitation I was on my way to Frankfurt, Germany to meet up with two scientists from Lawrence Livermore National Laboratory (LLNL) who would be joining me for the final leg to Amman. Unfortunately, one of the LLNL scientists missed the connecting flight to Frankfurt and had to take a later flight with a middle of the night stop in Syria. He also arrived in Amman without his luggage and attended our first meeting the next morning in his jeans and sneakers.

The majority of the participants in the planning meeting were water experts from Jordan, Israel and the Palestinian Authority, people who had been cooperating for many years and knew one another well. The PA delegation was led by Nabil al Sharif, the PA Water Minister and a civil engineering classmate of Arafat. The U.S. delegation was small, consisting of me and the two LLNL scientists, a Middle East water expert from the U.S. Department of State, and a former U.S. Congressman from Utah who was focused on U.S.-Middle East dialogue and was a moving force behind the planning meeting. In total, about fifty people participated in the two-day meeting.

My role was to bring an energy perspective to the meeting, in addition to the hydrologic expertise of the LLNL staffers and the political experience of the State Department representative. The meeting went well, reflecting the shared interests and perspectives of the water experts who had clearly worked together in the past, and I learned a great deal. In fact, my growing interest in water issues peaked when Nabil stood up at one point in the meeting to state that there would be no peace in the Middle East until the water issue was addressed.

Upon returning to the U.S. after the meeting, having concluded that water issues were much more important than I had realized, I resolved to learn as much as I could. Even though George W. Bush was elected U.S. President in November and Republicans took over the Executive Branch on January 20, 2001 (note: I had served as a political appointee in the Democratic Carter Administration in the 1970s), my senior status at DOE and control over most of my calendar allowed me the time to pursue my water education. Very quickly I realized that many of the things I had been saying in my public presentations on energy applied to water as well: there is no shortage of energy (water) in the world; what is in short supply is inexpensive energy (clean water) that people can afford to buy; energy (water) security depends on the wise use of the resource, whatever its source. This was my first realization of the close connection between water and energy, an understanding that I presumed other people shared. What surprised me, as I began to talk about this with people in both the water and energy communities, is that energy people rarely thought about water except as it was needed to cool thermal power plant exhausts and run through hydropower plants, and water people rarely thought about the energy needed to provide water services.

As I delved further into the nexus I came to understand the following: Central to addressing issues of water security—defined as the ability to access sufficient quantities of clean water to maintain adequate standards of food and goods production, sanitation and health—is having the energy to extract water from underground aquifers, push water through pipes and canals, manage and treat impaired water for reuse, and desalinate brackish and sea water to provide new fresh water supplies. Many aspects of energy production depend on the availability of water including hydropower, cooling of thermal power plants, fossil fuel production and processing, biofuels, carbon capture and sequestration, and hydrogen production. The inextricable linkage between energy and water is clear, but hasn’t always been recognized.

Other, indirect, linkages exist as well. Energy production and use can lead to contamination of underground and surface water supplies. If competing water uses limit use of waterways for transport of goods, rail and truck will require more energy to move those goods. Another critical linkage is that energy production and use are major contributors to greenhouse gas emissions, which have the potential to disrupt the hydrological cycle and impact global water resources long before other impacts are felt. By altering the timing of winter snows, snowmelt, and spring rains, climate change could overload reservoirs early in the season, forcing releases of water and leaving areas like California and the Himalayas high and dry in late summer. Coastal areas and island nations also face a serious threat from rising ocean water levels that destroy property and flood low-lying areas, causing salt-water intrusion of fresh-water supplies and putting the drinking water of millions at risk.

In June 2000 I felt confident enough of my growing knowledge to give a talk on water–energy issues to the Organization of American States: “Water, Energy and Sustainable Development”. This was followed by presentations to the World Renewable Energy Council in July and to an electric utility industry conference in March 2001. I also began to write on the subject and remember asking one of my colleagues, who was an accomplished writer, if it would be acceptable to use the word ‘nexus’ to describe the relationship—i.e., would it be easily understood? He said yes and so the phrase water–energy nexus was born.

During those early days at the start of the new century I was trying to generate some interest in DOE to explore this interesting connection, which I believed had relevance for several of DOE’s programs, but with little success. When the issue reached my new Assistant Secretary he dismissed the effort as ‘mission creep’ that would divert funding from other programs. Thus, to the best of my knowledge, my efforts constituted DOE’s only focused attention to the water–energy nexus at that time. Following several public presentations in 2003 and early 2004 the first real breakthrough came in August 2004 when I was invited to write a paper on water and energy security for the Institute for the Analysis of Global Security, where I served as a technical advisor. This request came in on a Wednesday; the article was published the following week and quickly led to more speaking opportunities. One of the more interesting was a presentation in September to FERC, the U.S. Federal Energy Regulatory Commission, on the topic “Water and Energy Security”. Another opportunity was a plenary address to the 2005 Solar World Congress in August 2005 entitled “Water Security: A Growing Crisis”, which was also published as the lead article in the July/August 2005 issue of Solar Today magazine. There were many other speaking opportunities in the following years, including presentations to the National Science Foundation, Lockheed-Martin Corporation, the U.S. State Department, the National Association of State Universities and Land Grant Colleges, the Brookings Institution, the Environmental Protection Agency, the IEA Working Party on Renewable Energy, the U.S. National Academies of Sciences, the International Water Association, and others.

Another important step in recognizing the water–energy nexus was the realization, at a regular meeting of DOE and U.S. National Laboratory officials to discuss DOE’s research needs, that many of the Labs had an interest in the water–energy connection but were pursuing it quietly on their own using small amounts of discretionary funds. I did a brief overview of the topic at the meeting and an entire afternoon ended up being devoted to Laboratory discussions of their activities. What came out of that meeting was the organization of a coordinated National Laboratory effort on water–energy issues to be led by Sandia National Laboratory (SNL) and Lawrence Berkeley National Laboratory (LBNL). Both Laboratories had committed resources to exploring the linkage between water and energy, and LBNL, involved in State of California water efforts, even had a dedicated water–energy technology team called WET. Other important players were Oak Ridge National Laboratory, which years earlier had led studies on desalination, and the National Energy Technology Laboratory (NETL), supported by DOE’s Fossil Energy Program. The resultant coordinated National Laboratory team soon provided briefings on the nexus for senior DOE managers.

To illustrate how quietly these Lab efforts had been underway, I had close contacts with LBNL through my clean energy efforts, and was totally surprised to learn of WET. When I mentioned this to a close friend at LBNL he invited me to spend a day at the Berkeley Lab to get briefed on their water activities and to talk about mine. It was an illuminating day on both parts.

Another important step was a meeting in 2008 with Professor Gustaf Olsson of Lund University in Sweden. He had read some of my papers, was on a visit to the U.S., and, expressing interest in learning more, asked to meet. We had a lengthy conversation in which I offered to share more of my work and a collaboration was born that lasts till this day. The rest is history—Gustaf undertook to master this field and in 2012 published his important book entitled “Water and Energy: Threats and Opportunities”, which is now in its second edition.

While there was no specific support for U.S. water–energy nexus studies during the Bush–Cheney Administration (2001-2008), there was a growing understanding that energy generation was the major contributor to the growing threat of global warming and climate change that would have major implications for precipitation patterns, water supply, and frequency of extreme weather events. As a result the phrase water–energy nexus was beginning to be heard more often and conferences began to be organized around that theme. Fracking of oil and gas shales, to increase fossil fuel supplies, also emerged as a contentious issue, given its large water demands and its potential for contaminating water supplies. To address that topic I organized a session on fracking for the Ground Water Protection Council Annual Forum in September 2010.

Throughout this period I continued to speak and write, and was encouraged by the election of Barack Obama as President of the U.S. in November 2008. Unlike the Bush Administration, which effectively denied the reality of global warming, President Obama talked openly about the need for global cooperation in addressing climate change. This was reflected in an Executive Order issued shortly after his inauguration that called on the federal departments and agencies to work together in identifying the potential impacts of global warming on U.S. government programs. This was an exciting time in which staff from all over the government worked together on multi-agency teams to carry out the mandated study. As the principal DOE official with a background in water–energy issues I was assigned to three of these teams, and on one was joined by a staff member from DOE’s policy office. Within a few months a comprehensive study was delivered to President Obama’s office.

With a Democratic Administration in place, I assumed water–energy issues would get increased attention and even some financial support. This proved to be naïve on my part as the new Democratic appointees to head the Office of Energy Efficiency and Renewable Energy (EERE) transferred me from my position in the EERE Policy and Budget Office to the Wind Power Program, where I was told that if I joined them I could no longer pursue my water–energy nexus activities. Rather than retire at that time, which I certainly could have done, I talked with people in the Wind Program and decided to serve as a graybeard in the newly established Office of Offshore Wind and help the program get started. I was and am enthusiastic about offshore wind as the most important emerging renewable energy technology.

This phase of my career ended with my retirement from DOE in 2012 and my decision to share my perspectives on renewable energy and water–energy issues via my writing, of which this invited article is one part. DOE has also taken steps to formally recognize the nexus as part of its program activities via a study released in 2015. The issue is finally getting more of the attention it deserves.

References

[1] Blog, ‘Thoughts of a Lapsed Physicist: Perspectives on energy and water technologies and policy’, www.lapsedphysicist.org

[2] A.R. Hoffman, The U.S. Government and Renewable Energy – A Winding Road. Pan Stanford Publishing 2016.

About to be Published: A Comprehensive Handbook on Solar Energy

‘Sun Towards High Noon: Solar Power Transforming Our Energy Future’ will be published in paperback by Pan Stanford Publishing on March 22nd. It will be listed at $34.95 but a 30% discount is available along with free shipping when ordered online at www.crcpress.com (Promo Code STA01). The latest volume in the Pan Stanford Series on Renewable Energy, it was edited by Dr. Peter F. Varadi, a solar energy pioneer and author of an earlier volume in the series ‘Sun Above the Horizon: Meteoric Rise of the Solar Industry’ (see below). Peter is also a contributing author in this new volume, along with Wolfgang Palz, Michael Eckhart, Paula Mints, Bill Rever, John Wolgromuth, Frank Wouters, and Allan Hoffman.

The broad scope and comprehensiveness of the book can be seen in its detailed Table of Contents reproduced below:

1. Meteoric Rise of PV Continues 1
1.1 Sun above the Horizon 2
1.2 Sun towards High Noon 6
2. New PV Markets Sustaining Mass Production 9
2.1 Utilization of the Terrestrial Solar Electricity 10
2.2 Solar Roofs for Residential Homes 13
2.3 Grids, Mini-Grids, and Community Solar 24
2.4 Commercial PV Systems 32
2.5 Utility-Scale Solar 43
2.5.1 Current Status 47
2.5.1.1 Concentrating solar power systems 47
2.5.1.2 Concentrating photovoltaic systems 50
2.5.1.3 Flat-plate photovoltaic systems:
fixed and tracking 51
2.5.2 Future Prospects 54
2.6 Important Large Market: Solar Energy and
Clean Water 56
2.6.1 Desalination and Disinfection: Introduction 56
2.6.2 Desalination 56
2.6.3 Disinfection 62
2.6.4 Conclusion 63
2.7 Quality and Reliability of PV Systems 64
2.7.1 Module Qualification Testing 65
2.7.2 Module Safety Certification 67
2.7.3 Module Warranties 68
2.7.4 Failure Rates in PV Systems 70
2.7.5 Module Durability Data 71
2.7.6 ISO 9000 72
2.7.7 IECQ and IECEE 72
2.7.8 To Further Improve Long-Term Performance 73
2.7.9 International PV Quality Assurance Task Force 75
2.8 Storage of Electrical Energy 83
2.8.1 Introduction 83
2.8.2 Why Is Electrical Energy Storage Important? 83
2.8.3 What Are the Various Forms of Electric Storage? 85
2.8.4 Applications of Energy Storage and Their Value 92
2.8.5 Capital Costs of Energy Storage 93
2.8.6 Concluding Remarks 94
2.9 Solar Energy and Jobs 95
2.9.1 Introduction 95
2.9.2 What Are the Facts? 95
2.9.3 Concluding Remarks 100
3. Financing 101
3.1 Financing of PV 102
3.2 Subsidies and Solar Energy 104
3.2.1 Introduction 104
3.2.2 What Forms Do Energy Subsidies Take? 104
3.2.3 What Is the History of US Energy Subsidies? 105
3.2.4 What Has All This Meant for Solar PV? 108
3.2.5 Concluding Remarks 110
3.3 Wall Street and Financing 111
3.3.1 Policy Drivers for Solar Energy Financing 111
3.3.1.1 The importance of policy to financing 113
3.3.2 Federal Policies 114
3.3.2.1 Federal RD&D 114
3.3.2.2 Public Utility Regulatory Policies Act 117
3.3.2.3 Investment tax credits 118
3.3.2.4 Commercialization and deployment 120
3.3.2.5 Government purchasing 122
3.3.3 State and Local Policies 123
3.3.3.1 Renewable Portfolio Standards and RECs 123
3.3.3.2 Solar Set-Asides and SRECS 123
3.3.3.3 Net energy metering 124
3.3.3.4 Leading state examples 124
3.3.4 International Policy for Solar Energy Financing125
3.3.4.1 Policies of individual governments 126
3.3.4.2 International agencies 129
3.3.4.3 Multi-lateral development banks 131
3.3.4.4 Impact of NGOs on government policy 132
3.4 Solar Market Segmentation and Financing Methods 136
3.4.1 Utility-Scale Solar Project Financing 136
3.4.2 Commercial & Institutional Rooftop Financing 136
3.4.3 Community Solar 137
3.4.4 Residential Rooftop Financing 137
3.4.4.1 PPA model 138
3.4.4.2 Inverted lease 138
3.4.4.3 Loan-to-ownership 139
3.5 Solar Project Financing 140
3.5.1 Traditional Power Generation Financing 140
3.5.2 PURPA and the Development of Non-Recourse
Financing 140
3.5.3 Conditions Required for Project Financing 142
3.5.4 Overall Capital Structure: Equity, Tax
Equity, and Debt 143
3.5.5 Tax Equity Using the Investment Tax Credit 144
3.5.6 Bank Loans 145
3.5.7 Institutional Capital 146
3.5.8 Project Bonds 147
3.6 Capital Market Investment in Solar Securities 148
3.6.1 Equity Market Investment in Solar Companies 148
3.6.2 Yieldcos and Other Portfolio Companies and
Funds 150
3.6.3 Green Bonds 153
3.6.4 Securitization 155
3.7 Summary 157
3.8 Glossary 158
4. Present and Future PV Markets 161
4.1 The Global View of PV 162
4.2 The Present and Future of Neglected PV Markets:
Africa and the Middle East 164
4.2.1 Introduction 164
4.2.2 Africa 166
4.2.3 Middle East and North Africa 183
4.3 The Present and Future Market in the Americas 192
4.3.1 The United States of America 194
4.3.2 Canada 204
4.3.3 Countries in Latin America 205
4.4 The Present and Future Market in Europe 208
4.5 The Present and Future Markets in Asia 220
4.6 The Present and Future Markets in Australia
and in Oceania 231
4.7 Global Community Unites to Advance Renewable
Energy: IRENA 236
4.7.1 Start of IRENA 238
4.7.2 Hermann Scheer
4.7.3 IRENA’s Roots and Early Days 241
4.7.4 Institutional Setup 246
4.7.5 Hub, Voice, Resource 247
4.7.6 IRENA’s work 248
4.7.7 The Way Forward 252
4.7.8 Glossary 254
5. The Impact of Solar Electricity 255
5.1 The Impact of Solar Electricity 256
5.2 In the Twilight of Big Oil, in Retrospect, PV Was
a Missed Boat 259
5.3 PV and the Brave New World of the Electric Utilities 267
6. Outlook to the Future 281
About the Contributors 291
Index 295

The value of this new book is captured in the two back cover comments:

“This comprehensive and timely book provides the reader with a very thorough technical, regulatory, and financial overview of the global solar (PV) industry. Featuring internationally eminent contributors from the who’s who of solar industry experts, this book offers insights, analysis, and background on all the key issues facing this rapidly growing industry. It will be an invaluable reference and resource for scholars, investors, and policymakers dealing with the emerging solar power phenomenon.” (Branko Terzic, Atlantic Council, Former Commissioner/U.S. Federal Energy Regulatory Commission)

“The long-term welfare of people on our planet depends on an energy system heavily dependent on solar energy. This solar energy handbook presents a well-documented, comprehensive, and insightful view of solar energy’s past, present, and future. Its preeminent contributing authors include solar energy pioneers, visionaries, and practitioners who bring a wealth of experience and insights into solar energy markets, financing, policy, and technology.” (Karl R. Rabago, Executive Director/Pace Energy and Climate Center, Elisabeth Haub School of Law, Pace University)