New Book: ‘Water, Energy, and Environment – A Primer’

After a long hiatus from blogging while I worked on a new book, I am pleased to announce that the book ‘Water, Energy, and Environment – A Primer’ will be published by International Water Association Publishing (IWAP) on February 18th (2019). It will be available in both printed and digital form, and the digital version will be downloadable for free as an Open Access (OA) document.

To access the free digital version go to IWAP’s OA website on Twitter: https://twitter.com/IWAP_OA.

Attached below is front material from the book, its preface and table of contents. Designed to serve as a basic and easily read introduction to the linked topics of water, energy, and environment, it is just under 200 pages in length, a convenient size to throw into a folder, a briefcase, or a backpack. Its availability as an OA document means that people all over the world with access to the internet will have access to the book and its 10 chapters.

With the completion of the book I plan to return to a regular schedule of blogging.
…………………………..
Contents
Preface ………………………………….. xi
Acknowledgement ……………………….. xv
Acronyms ……………………………… xvii
Epigraph ……………………………….. xxi
Chapter 1
Water and its global context …………………. 1
1.1 Earth’s Water Resources . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Saline Water and Desalination Processes . . . . . . . . . . . 2
1.3 Energy Requirements and Costs of Desalination . . . . . 5
1.4 Demand for Freshwater . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Implications of Limited Access to Freshwater . . . . . . . . . 9
1.6 Actions to Increase Access to Freshwater . . . . . . . . . . 10
1.7 Gender Equity Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Chapter 2
Energy and its global context ……………….. 13
2.1 Energy’s Role in Society . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Energy Realities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 What is Energy? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Energy Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Important questions . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 How is energy used? . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Electrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Chapter 3
Exploring the linkage between water
and energy ……………………………….. 23
3.1 Indirect Linkages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 The Policy Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 The Conundrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Addressing the Conundrum . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 The Need for Partnership . . . . . . . . . . . . . . . . . . . . . . . . . 27
Chapter 4
Energy production and its consequences for
water and the environment …………………. 29
4.1 Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 More on Climate Change . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Environment and Religion . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 The theocentric worldview . . . . . . . . . . . . . . . . . 33
4.3.2 The anthropocentric worldview . . . . . . . . . . . . . 34
4.3.3 Other worldviews . . . . . . . . . . . . . . . . . . . . . . . . . 34
Chapter 5
Energy options ……………………………. 37
5.1 Fossil Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Nuclear Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Geothermal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 The Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5.1 Energy demand . . . . . . . . . . . . . . . . . . . . . . . . . . 40
vi Water, Energy, and Environment – A Primer
5.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5.3 Saving energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5.4 Accelerating implementation . . . . . . . . . . . . . . . 43
5.5.5 Energy Star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5.6 The lighting revolution . . . . . . . . . . . . . . . . . . . . . 45
5.5.7 Energy efficiency in buildings . . . . . . . . . . . . . . . 48
5.5.7.1 Zero energy buildings . . . . . . . . . . . . . 48
5.5.7.2 Electrochromic windows . . . . . . . . . . . 52
5.6 Energy Efficiency in Industry . . . . . . . . . . . . . . . . . . . . . . 54
5.7 Energy Efficiency in Transportation . . . . . . . . . . . . . . . . 56
Chapter 6
Fossil fuels ………………………………. 61
6.1 Coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.1 Carbon capture and sequestration . . . . . . . . . . 63
6.1.2 A conundrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Petroleum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.1 Oil spills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.2 Peak oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.1 Methane hydrates . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.2 Fracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Chapter 7
Nuclear power ……………………………. 85
7.1 Nuclear Fission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.1 Fission fundamentals . . . . . . . . . . . . . . . . . . . . . . 85
7.1.2 Introduction to nuclear issues . . . . . . . . . . . . . . . 87
7.1.3 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Nuclear Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2.1 Fusion fundamentals . . . . . . . . . . . . . . . . . . . . . . 91
7.2.2 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.3 Barriers to Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2.4 Pros and cons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2.5 Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Chapter 8
Renewable energy ………………………… 97
8.1 The Sun’s Energy Source and Radiation
Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2 Direct Solar Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.2.1 Photovoltaics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.2.2 Concentrating solar power (CSP) . . . . . . . . . . 108
8.2.2.1 Power tower . . . . . . . . . . . . . . . . . . . . 109
8.2.2.2 Linear concentrator . . . . . . . . . . . . . . 110
8.2.2.3 Dish engine . . . . . . . . . . . . . . . . . . . . . 111
8.2.2.4 CSTP history . . . . . . . . . . . . . . . . . . . 112
8.2.2.5 Advantages and disadvantages . . . 112
8.2.2.6 Thermal storage . . . . . . . . . . . . . . . . . 113
8.2.2.7 Current status . . . . . . . . . . . . . . . . . . . 114
8.2.2.8 Concentrating photovoltaics (CPV) . 115
8.3 Solar Power Satellite (SPS) System . . . . . . . . . . . . . . 116
8.4 Hydropower and Wind Energy . . . . . . . . . . . . . . . . . . . 119
8.4.1 Hydropower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.4.2 Wind energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.4.2.1 Onshore wind . . . . . . . . . . . . . . . . . . . 121
8.4.2.2 History . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.4.2.3 An onshore limitation . . . . . . . . . . . . . 124
8.4.2.4 Offshore wind . . . . . . . . . . . . . . . . . . . 125
8.5 Biomass Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.5.1 Sources of biomass . . . . . . . . . . . . . . . . . . . . . . 129
8.5.2 Wood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.5.3 Biofuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.5.4 Algae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.5.5 Biochar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.5.6 The future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.6 Geothermal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.6.1 Sources of geothermal energy . . . . . . . . . . . . . 134
8.6.2 Manifestations of geothermal energy . . . . . . . 135
8.6.3 Uses of geothermal energy . . . . . . . . . . . . . . . . 135
8.6.3.1 Geothermal power generation . . . . . 136
8.6.3.2 Ground-source heat pumps . . . . . . . 138
8.6.4 An unusual source of geothermal energy . . . . 140
Ocean Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.7.1 Wave energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.7.1.1 Wave energy conversion
devices . . . . . . . . . . . . . . . . . . . . . . . . 142
8.7.1.2 Potential and pros and cons . . . . . . . 143
8.7.2 Ocean current energy . . . . . . . . . . . . . . . . . . . . 144
8.7.3 Tidal energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.7.3.1 Barrage . . . . . . . . . . . . . . . . . . . . . . . . 146
8.7.3.2 History . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.7.3.3 Environmental impacts . . . . . . . . . . . 147
8.7.4 Ocean thermal energy conversion (OTEC) . . 147
8.7.4.1 Barriers . . . . . . . . . . . . . . . . . . . . . . . . 148
8.7.4.2 OTEC technologies . . . . . . . . . . . . . . 148
8.7.4.3 Other cold water applications . . . . . . 149
8.7.4.4 OTEC R&D . . . . . . . . . . . . . . . . . . . . . 149
Chapter 9
Energy storage …………………………… 151
9.1 Storage and Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.2 Types of Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.2.1 Traditional and advanced batteries . . . . . . . . . 153
9.2.1.1 Lead–acid . . . . . . . . . . . . . . . . . . . . . . 153
9.2.1.2 Sodium sulfur . . . . . . . . . . . . . . . . . . . 153
9.2.1.3 Nickel–cadmium . . . . . . . . . . . . . . . . . 154
9.2.1.4 Lithium-ion . . . . . . . . . . . . . . . . . . . . . 154
9.2.1.5 Supercapacitors . . . . . . . . . . . . . . . . . 155
9.2.2 Flow batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.2.3 Flywheels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.2.4 Superconducting magnetic energy
storage (SMES) . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.2.5 Compressed air energy storage (CAES) . . . . 159
9.2.6 Pumped storage . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.2.7 Thermal storage . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.4 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.5 Fundamental Change . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Chapter 10
Policy considerations …………………….. 165
10.1 Important Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
10.1.1 Is there a physical basis for understanding
global warming and climate change? . . . . . . 166
10.1.2 Is there documented evidence for global
warming and climate change? . . . . . . . . . . . . 168
10.1.3 Can global warming and climate change be
attributed to human activities, and what are
those activities? . . . . . . . . . . . . . . . . . . . . . . . . 170
10.1.4 What are the potential short- and long-term
impacts of global warming and climate
change with respect to water supply,
environment, and health? What is the
anticipated time scale for these
impacts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10.1.5 What can be done to mitigate the onset
and potential impacts of global warming
and climate change? . . . . . . . . . . . . . . . . . . . . 179
References ……………………………… 183
Index …………………………………… 189

……………………

Preface
This book springs from my strong conviction that clean water and clean energy are the critical elements of long-term global sustainable development. I also believe that we are experiencing the beginning of an energy revolution in these early years of the 21st century. Providing clean water requires energy, and providing clean energy is essential to reducing the environmental impacts of energy production and use. Thus, I see a nexus – a connection, a causal link – among water, energy, and environment. In recent years we have adopted the terminology of the water-energy nexus for the intimate relationship between water and energy, and similarly we can apply the term nexus to the close connections among water, energy, and environment. Thisuse of the term nexus can be, and has been, extended to include the related issues of food production and health. Dealing with, and writing about, a two-element nexus is difficult enough. In this book, I will limit my analysis and discussion to the three-element water -energy-environment nexus and leave the discussion of other possible nexus elements to those more qualified to comment.

This book also springs from my observation that while there are many existing books of a more-or-less technical nature on the three elements of this nexus, a book addressing each of them and their interdependencies in a college-level primer for a broad global and multidisciplinary audience would be valuable. Consideration of these and related issues, and options for addressing them, will be priorities for all levels of government. They will also be priorities for many levels of the
private sector in the decades ahead, both in developing and developed nations. A handbook-style primer that provides an easily read and informative introduction to, and overview of, these issues will contribute broadly to public education. It will assist governments and firms in carrying out their responsibilities to provide needed services and goods in a sustainable manner, and help to encourage young people to enter these fields. It will serve as an excellent mechanism for exposure of experts in other fields to the issues associated with the water-energy-environment nexus. Further, in addition to the audiences mentioned above, target audiences include economists and others in the finance communities who will analyze and provide the needed investment funds, and those in the development community responsible for planning and delivering services to underserved populations.
The book is organized as follows: the first chapter will be devoted to the concept of nexus and how the three elements, water, energy, and environment, are inextricably linked. This recognition leads to the conclusion that if society is to optimize their contributions to human and planetary welfare they must be addressed jointly. No longer must policy for each of these elements be considered in its own silo. Chapters 2 and 3 will be devoted to spelling out global contexts for water and energy issues, respectively. Chapter 4, on related environmental issues, will address the issues of water contamination, oil spills, fracking, radioactive waste storage, and global warming/
climate change. Chapter 5 will be a discussion of energy efficiency – i.e., the wise use of energy – and its role in limiting energy demand and its associated benefits. Chapter 6 will focus on the basics of fossil fuels – coal, oil, natural gas – which today dominate global energy demand. Chapter 7 will discuss nuclear-fission-powered electricity production, which today accounts for 10% of global electricity. It will also discuss the prospects for controlled nuclear fusion. Chapter 8 will discuss the broad range of renewable energy technologies – wind, solar,hydropower, biomass, geothermal, ocean energy – which are the basis of the now rapidly emerging energy revolution. Chapter 9 will discuss the closely related issue of energy storage. Finally, Chapter 10 will address
policy issues associated with water, energy, and environment, discuss policy history and options, and provide recommendations.

A Presidential Campaign Speech from 2052

(Note to my readers: please allow me this ‘indulgence’ as it allows me to discuss what I see coming in the energy field.)

My fellow Americans, I am pleased to announce today my candidacy for President of the United State. We have just turned the corner on the first half of the 21st century, a time of significant change for our country and many other countries. In 2052 it is time to consolidate and reaffirm those changes that are beneficial, and plan for the coming decades. The 21st century has been an American century, but not exclusively – other parts of the world have demonstrated global leadership both economically and politically in these past 50 years – and it is encumbent on a new set of U.S. leaders to continue the American century in peaceful and meaningful cooperation with our global partners. Before discussing my plans for the future I would like to review what I see as the history and the accomplishments of the century’s first fifty years.

The century began as an extension of the 20th century – multiple national conflicts, internal dissension in many countries, and heavy dependence on traditional fuels such as coal, oil and natural gas. Global population continued to increase – having grown from 1.8 billion to more than 6 billion in the past century – and is expected to reach as much as 10 billion sometime before the turn of the current century. That number in 2052 is just under eight billion.

Increasing electrification was an important characteristic of the 20th century and will continue to define the 21st century as well. It is allowing increasing numbers of people to enjoy the energy services that access to electricity and other forms of energy brings – lighting, heating, cooling, communication, transportation, and the ability to make things quickly and in quantity. Today, fewer than five percent of the world’s population lacks access to reliable electricity supplies, and this number should reach zero in the next two decades. Essentially all have access to wireless devices that allow widespread communication and access to the world’s store of information.

This access to energy, the closely related access to clean water, and wireless capability have significantly reduced global poverty and greatly enhanced opportunities for learning. The education revolution that has been made possible by universal access to the internet, for both women and men, and the individualized learning that the computer revolution has made possible, together with energy access, has finally allowed a slowdown in the rate of population growth so that a stabilized global population may be achievable in my lifetime.

This century has also seen other powerful changes. In 2008 our country elected its first black President, and then reelected him in 2012 as affirmation of their good judgement four years before. In 2016 the U.S., after a lengthy and often nasty presidential campaign, elected its first female president, who once and for all showed that women can serve effectively at the highest levels of our political life. Together with the military opening all its ranks to female participation in 2015, the so-called ‘glass ceiling’ was finally shattered, never to be restored. That election also saw the election of a Vice President of Hispanic ethnicity, who eventually went on to become the 47th President of the United States. Today I am trying to shatter still another political barrier by attempting to become the first Muslim American to receive the nomination for President of a major political party.

While much has changed in the past five decades, and I will discuss one of the most important changes in detail shortly, not everything has changed, unfortunately. We are still human beings, with all our many shortcomings, and religious and racial intolerance are still major sources of pain and conflict in the modern world. While the threat of Islamic jihadism that arose forcefully in the first few decades of the century has been reduced significantly through the actions of a global coalition of Muslim and non-Muslim governments, remnants are still with us and require careful attention. As our President I would commit all the resources needed, in cooperation with our allies, to keep this threat under control. A major factor in controlling this threat has been the willingness of Sunni and Shiite governments to put aside their religious differences In the name of their overriding commonality, Islam.

Among the other changes we have seen in our lifetime is the establishment of the first human colonies on the moon and on Mars. The moon colony was a joint U.S.-Chinese achievement in 2032, just twenty years ago, and the first Mars colony of four people was established just 8 years ago, in 2044. Both were extraordinary events at the time, and commanded global attention, but as is true of so many achievements in outer space the existence of the colonies is becoming part of the background. That is an OK result as we want space travel to become a routine part of the mainstream.

Other major steps forward have been in the field of medicine. With advances in DNA measurement and manipulation personalized treatment has become routine for many gene-related diseases. It is not unusual today to see people living into their second centuries and still functioning normally. Of course the social security and related safety-net systems in the U.S. have had to be adjusted for this new longevity, and as you might expect, only after long and difficult political battles.

Finally, let me talk in some detail about the most important revolution of the 21st century, one I have worked hard to support in my current position as a U.S. Senator. It is one that I am committed to support and advance if I am privileged to serve as your President. That is the energy revolution that started in the latter part of the 20th century, took flight during the early decades of the 21st, and is today reaching all parts of the globe. It is a transition point in human history.

The 1973-74 Oil Embargo, which took place almost a century ago, was a brutal wake up call for many nations, including our own. The history books tell many stories about how Americans, for the first time, began to look at energy issues in a different light. Prior to the Embargo energy costs were sufficiently low that it was not an area of public concern. Then, one day Americans awakened to the fact that much of their energy, especially for transportation, was imported from abroad, and that such supplies were subject to political uncertainties beyond our control. This was true in the countries of Western Europe as well. We responded by creating the International Energy Agency, a mechanism for sharing oil reserves among countries if another embargo threatened our energy supplies. We also started looking at energy alternatives, with particular emphasis on nuclear power. In fact the public mantra at that time by our political leaders was a doubling every decade of the number of nuclear power plants deployed in the U.S. A few others raised concerns about nuclear power and called for examination of enhanced energy efficiency and renewable energy alternatives. Until that time renewable energy had not been seriously considered except in the case of hydroelectricity. The suggestion related to enhanced energy efficiency was dismissed by economists and others who saw economic growth (GDP) tied one-to-one with energy consumption, and renewables were attacked as too expensive and incapable of meeting the demands of the U.S. economy. These arguments persisted for several decades until it was shown that GDP and energy consumption were not directly linked, climate change associated with combustion of fossil fuels became a major global issue, the costs of renewable energy systems began to decrease, and the ability of renewable energy in the form of electricity, biofuels, and heat were shown capable of supporting large economies. These new realities became the focus of policy debates in the first two decades of the century, and finally came to govern U.S. energy policy in the third decade when the majority of the private sector finally put its full support behind renewables and the battle to limit global warming. All Presidents since the Obama era have supported a move away from dependence on fossil fuels – it was 80% at the turn of the century – and Congress finally placed a steadily increasing cost on carbon emissions in 2020. This created the economic environment needed for investment in clean energy technologies and reduced use of fossil fuels. It allowed the U.S. to finally catch up with the many other countries that had seen the importance of these changes and implemented appropriate policies many years before.

These changes have led to today’s energy situation in the U.S. – 70% of electricity is generated by solar, wind, hydropower, and geothermal, natural gas from fracking peaked in 2040 and is steadily being replaced as an energy source in power plants as renewables take over, petroleum from fracking of oil shale peaked at about the same time and has been used to power aging and disappearing transportation fleets, electric vehicles dominate the automobile and light duty truck markets, all new aircraft and ships are designed to run on alternative biofuels, energy efficiency has been enshrined as the cornerstone of national energy policy, coal has been replaced as a domestic energy source except in a few industries, and nuclear power’s share of electricity generation has been steadily reduced to its current value of 5%. Total national energy demand has been stable even as the U.S. population has increased to 400 million, all new homes are routinely outfitted with solar energy rooftop systems and ground source heart pumps wherever feasible, the U.S. leads the world in wind turbine and wind energy production, we are second only to China in offshore wind energy deployment and production, and battery energy storage has become as ubiquitous as any other household appliance.

The world has turned a corner in these pat 50 years, undergoing an inevitable transition to dependence on energy from the sun and heat derived from radioactive decay in the core of the earth. These clean energy sources will last as long as people populate the earth, unlike fossil fuels which are depletable on any timescale relevant to humankind. We owe much to our fossil fuel resources, the product of millions of years of transformation of organic materials subject to high temperatures and extreme pressures deep in the earth, but the fossil fuel era is coming to an end and will eventually be only a blip on the timeline of history.

My promise to you as your President will be to continue and strengthen this transition in all ways possible so that our children, grandchildren, and their heirs, will live in a world free of global warming and the other harmful impacts of burning fossil fuels. Nuclear fission power had its day as well, but the issues associated with its use – cost, safety, long term storage of wastes, and weapons proliferation – have proved too difficult to accept now that renewable energy has been shown up to the task of meeting societal needs. Nuclear fusion, a much cleaner form of nuclear energy, remains as a long term possibility as well, but progress in taming the process that powers our sun and other stars has been slow and time will tell if controlled nuclear fusion has a future here on earth. I support continued cooperation with other countries in researching this technology that offers unlimited energy availability but so far has always been a few years away. Our investments largely must go into renewable technologies to ensure completion of the transition. This is our legacy to the future.

New book – ‘Energy Poverty: Global Challenges and Local Solutions’

Two years in the making, this 21-chapter book was released by Oxford University Press (OUP) on December 20, 2014. It addresses the importance of energy access in reducing poverty and increasing human welfare, a topic just beginning to receive widespread visibility. A brief description of the book is attached below; a Table of Contents can be found at the following website:
https://global.oup.com/academic/product/energy-poverty-9780199682362?cc=dk&lang=en&

image

Edited by Antoine Halff, Benjamin K. Sovacool, and Jon Rozhon

A one-stop treatment of energy poverty, an issue whose pivotal role in the fight for human development and against poverty is only now being recognised
A practical guide and reference work for policymakers and practitioners in the field
Provides a fresh perspective on tomorrow’s energy challenges
Brings together diverse viewpoints and includes contributions from experts and practitioners from all over the world, including China, India, Brazil, sub-Saharan Africa, and the Middle East
Includes chapters from authors at the cutting edge of research: Fatih Birol, chief economist of the International Energy Agency, Han Wenke, head of China’s Energy Research Institute, Nigel Bruce of the World Health Organisation, and Jason Bordoff, former senior advisor on energy to President Barack Obama”

I also attach a copy of the chapter I was privileged to write, ‘Energy and Water: A Critical Linkage”, on a topic that is also receiving increasing attention. It is a bit long compared to my usual blog posts, but worth reading. A special gift awaits those who read to the end of the chapter.
…………………………………………
image
Page 2
image
image
image
image
image
image
image
image
image
image
image
image
image

Controlled Nuclear Fusion: The Energy Source That Is Always A Few Years Away

Nuclear fusion, the process that powers our sun and other stars, is considered by many the ‘holy grail’ of energy supply. Why is that so? The numbers tell the story.

The basic physics of fusion is well known and easily understood: when light elements (lighter than iron) are forced together under extreme conditions of pressure and temperature they will fuse – i.e., form a heavier element than either that is lighter than the combined mass of the two fusing elements. The mass that is apparently ‘lost’ is converted to energy according to Einstein’s famous equation E=mc2 (i.e., c squared).

image

It turns out that so much energy is released in this process (a simple, back-of-the-envelope calculation is shown below) that if the process can be harnessed on earth an unlimited source of energy is available. Fusion has other advantages, as well as serious technological problems which are also discussed below. First, why are the numbers so intriguing?

While many fusion reactions are possible and take place in stars, most attention has been directed to the deuterium-tritium (D-T) fusion reaction that has the lowest energy threshold. Both deuterium and tritium are heavier, isotopic forms of the common element, hydrogen. Deuterium is readily available from seawater (most seawater is two parts ordinary hydrogen to one part oxygen; one out of every 6,240 seawater molecules is two parts deuterium to one part oxygen). Tritium supplies do not occur in nature – it is radioactive and disappears quickly due to its short half-life – but can be bred from a common element, lithium, when exposed to neutrons.

image

D-T is also the reaction that largely powers our sun (but not exclusively), routinely converting massive amounts of hydrogen into massive amounts of helium and releasing massive amounts of energy.

image

It has been doing this for more than four billion years and is estimated to continue doing this for about another five billion when the hydrogen supply will finally dwindle. At this latter point the fusion reactions in the core of the sun will no longer be able to offset the gravitational forces acting on the sun’s very large mass and the sun will explode as the Crab Nebula did in 1054. It will then expand and swallow up the earth and other planets. Take heed!

To understand the numbers: every cubic meter of seawater, on average, contains 30 grams of deuterium. There are 300 million cubic miles of water on earth, 97% in the oceans.

image

Each deuterium nucleus (one proton + one neutron) weighs so little (3.3 millionths of a trillionth of a trillionth of a kilogram) that these 30 grams amount to close to a trillion trillion nuclei. Each time one of these nuclei is fused with a tritium nucleus (one proton + two neutrons) 17.6 MeV (millions of electron volts) of energy is released which can be captured as heat. Now MeV sounds like a lot of energy but it isn’t – a Btu, a more common energy unit, is 6.6 thousand trillion MeV).

Now this is a lot of numbers, some very small and some very large, but taking them all together that cubic meter of seawater can lead to the production of about 7 million kWh of thermal energy, which if converted into electricity at 50% efficiency corresponds to 3.5 million kWh. If one were to convert the potential fusion energy in just over one million cubic meters of seawater (about 3 ten thousandths of a cubic mile) one could supply the annual U.S. electricity production of 4 trillion kWh – and remember that our oceans contain several hundred million cubic miles of water. This is why some people get excited about fusion energy.

Unfortunately, there are a few barriers to overcome, starting with how to get D and T, both positively-charged nuclei, to fuse. The positive electrical charges repel one another (the so-called Coulomb Barrier) and you have to bring the distance between them to an incredibly small number before the ‘strong nuclear force’ can come into play and allow creation of the new, heavier helium nucleus (two protons + two neutrons). It is this still mysterious force that holds protons and neutrons together in our various elements.

image

So how does one bring these two nuclei close enough together to allow fusion to occur? The answer in the sun is enormous gravitational pressure and temperature, which we cannot reproduce on earth. The pressures in the sun are beyond our ability to achieve in any sustained way but the temperatures are not (temperature is a way of characterizing a particle’s kinetic energy, or speed) and fusion research is focused on achieving extremely high temperatures (100’s of millions of degrees or higher) at achievable high pressures. The fact that this is not easy to achieve is why fusion energy is always a ways in the future. Two techniques are the focus of global fusion research activities – magnetic confinement (as in tokamaks and Iter) and inertial confinement (as in laser-powered or ion beam-powered fusion) – see, e.g., http://www.world-nuclear.org/info/Current-and-Future-Generation/Nuclear-Fusion-Power. Several hundred billion US$ a year are being spent on these activities, mostly in international collaborations.

image

image

Fusion on earth has been achieved but not in a controlled manner, and only in very small amounts and for very short time periods with one exception, the hydrogen bomb. This is an example of an uncontrolled fusion reaction (triggered by an atomic bomb) that releases a large amount of energy in a few millionths of a second. As the French physicist and Nobel laureate Pierre-Gilles de Gennes once said: “We say that we will put the sun in a box. The idea is pretty. The problem is, we don’t know how to make the box.”

The pros and cons of fusion energy can be summarized as follows:
Pros:
– virtually limitless fuel availability at low cost
– no chain reaction, as in nuclear fission, and so it is easy to stop the energy release
– fusion produces no greenhouse gases and little nuclear waste compared to nuclear fission (the radioactive waste from fusion is from neutron activation of elements in its containment environment)
Cons:
– still unproven, at any scale, as controlled reaction that can release more energy than required to initiate the fusion (‘ignition’)
– requires extremely high temperatures that are difficult to contain
– many serious materials problems arising from extreme neutron bombardment
– commercial power plants, if achievable, would be large and expensive to build
– at best, full scale power production is not expected until at least 2050

Where do I come out on all this? I am not trained as a fusion physicist (just as a low temperature solid state physicist) and so lack a close involvement with the efforts of so many for so long to achieve controlled nuclear fusion, and the enthusiasm and positive expectations that inevitably result. Nevertheless, I support the long-term effort to see if ignition can be achieved (some scientists believe Iter is that critical point) and if the many engineering problems associated with commercial application of fusion can be successfully addressed. In my opinion the potential payoff is too big and important for the world to ignore. In fact I was once asked for my advice on whether the U.S. Government should support fusion R&D by a member of the DOE transition team for President-elect Carter, and my answer hasn’t changed.