New Book: ‘Water, Energy, and Environment – A Primer’

After a long hiatus from blogging while I worked on a new book, I am pleased to announce that the book ‘Water, Energy, and Environment – A Primer’ will be published by International Water Association Publishing (IWAP) on February 18th (2019). It will be available in both printed and digital form, and the digital version will be downloadable for free as an Open Access (OA) document.

To access the free digital version go to IWAP’s OA website on Twitter: https://twitter.com/IWAP_OA.

Attached below is front material from the book, its preface and table of contents. Designed to serve as a basic and easily read introduction to the linked topics of water, energy, and environment, it is just under 200 pages in length, a convenient size to throw into a folder, a briefcase, or a backpack. Its availability as an OA document means that people all over the world with access to the internet will have access to the book and its 10 chapters.

With the completion of the book I plan to return to a regular schedule of blogging.
…………………………..
Contents
Preface ………………………………….. xi
Acknowledgement ……………………….. xv
Acronyms ……………………………… xvii
Epigraph ……………………………….. xxi
Chapter 1
Water and its global context …………………. 1
1.1 Earth’s Water Resources . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Saline Water and Desalination Processes . . . . . . . . . . . 2
1.3 Energy Requirements and Costs of Desalination . . . . . 5
1.4 Demand for Freshwater . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Implications of Limited Access to Freshwater . . . . . . . . . 9
1.6 Actions to Increase Access to Freshwater . . . . . . . . . . 10
1.7 Gender Equity Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Chapter 2
Energy and its global context ……………….. 13
2.1 Energy’s Role in Society . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Energy Realities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 What is Energy? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Energy Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Important questions . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 How is energy used? . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Electrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Chapter 3
Exploring the linkage between water
and energy ……………………………….. 23
3.1 Indirect Linkages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 The Policy Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 The Conundrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Addressing the Conundrum . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 The Need for Partnership . . . . . . . . . . . . . . . . . . . . . . . . . 27
Chapter 4
Energy production and its consequences for
water and the environment …………………. 29
4.1 Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 More on Climate Change . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Environment and Religion . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 The theocentric worldview . . . . . . . . . . . . . . . . . 33
4.3.2 The anthropocentric worldview . . . . . . . . . . . . . 34
4.3.3 Other worldviews . . . . . . . . . . . . . . . . . . . . . . . . . 34
Chapter 5
Energy options ……………………………. 37
5.1 Fossil Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Nuclear Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Geothermal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 The Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5.1 Energy demand . . . . . . . . . . . . . . . . . . . . . . . . . . 40
vi Water, Energy, and Environment – A Primer
5.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5.3 Saving energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5.4 Accelerating implementation . . . . . . . . . . . . . . . 43
5.5.5 Energy Star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5.6 The lighting revolution . . . . . . . . . . . . . . . . . . . . . 45
5.5.7 Energy efficiency in buildings . . . . . . . . . . . . . . . 48
5.5.7.1 Zero energy buildings . . . . . . . . . . . . . 48
5.5.7.2 Electrochromic windows . . . . . . . . . . . 52
5.6 Energy Efficiency in Industry . . . . . . . . . . . . . . . . . . . . . . 54
5.7 Energy Efficiency in Transportation . . . . . . . . . . . . . . . . 56
Chapter 6
Fossil fuels ………………………………. 61
6.1 Coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.1 Carbon capture and sequestration . . . . . . . . . . 63
6.1.2 A conundrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Petroleum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.1 Oil spills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.2 Peak oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.1 Methane hydrates . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.2 Fracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Chapter 7
Nuclear power ……………………………. 85
7.1 Nuclear Fission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.1 Fission fundamentals . . . . . . . . . . . . . . . . . . . . . . 85
7.1.2 Introduction to nuclear issues . . . . . . . . . . . . . . . 87
7.1.3 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Nuclear Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2.1 Fusion fundamentals . . . . . . . . . . . . . . . . . . . . . . 91
7.2.2 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.3 Barriers to Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2.4 Pros and cons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2.5 Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Chapter 8
Renewable energy ………………………… 97
8.1 The Sun’s Energy Source and Radiation
Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2 Direct Solar Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.2.1 Photovoltaics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.2.2 Concentrating solar power (CSP) . . . . . . . . . . 108
8.2.2.1 Power tower . . . . . . . . . . . . . . . . . . . . 109
8.2.2.2 Linear concentrator . . . . . . . . . . . . . . 110
8.2.2.3 Dish engine . . . . . . . . . . . . . . . . . . . . . 111
8.2.2.4 CSTP history . . . . . . . . . . . . . . . . . . . 112
8.2.2.5 Advantages and disadvantages . . . 112
8.2.2.6 Thermal storage . . . . . . . . . . . . . . . . . 113
8.2.2.7 Current status . . . . . . . . . . . . . . . . . . . 114
8.2.2.8 Concentrating photovoltaics (CPV) . 115
8.3 Solar Power Satellite (SPS) System . . . . . . . . . . . . . . 116
8.4 Hydropower and Wind Energy . . . . . . . . . . . . . . . . . . . 119
8.4.1 Hydropower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.4.2 Wind energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.4.2.1 Onshore wind . . . . . . . . . . . . . . . . . . . 121
8.4.2.2 History . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.4.2.3 An onshore limitation . . . . . . . . . . . . . 124
8.4.2.4 Offshore wind . . . . . . . . . . . . . . . . . . . 125
8.5 Biomass Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.5.1 Sources of biomass . . . . . . . . . . . . . . . . . . . . . . 129
8.5.2 Wood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.5.3 Biofuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.5.4 Algae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.5.5 Biochar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.5.6 The future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.6 Geothermal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.6.1 Sources of geothermal energy . . . . . . . . . . . . . 134
8.6.2 Manifestations of geothermal energy . . . . . . . 135
8.6.3 Uses of geothermal energy . . . . . . . . . . . . . . . . 135
8.6.3.1 Geothermal power generation . . . . . 136
8.6.3.2 Ground-source heat pumps . . . . . . . 138
8.6.4 An unusual source of geothermal energy . . . . 140
Ocean Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.7.1 Wave energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.7.1.1 Wave energy conversion
devices . . . . . . . . . . . . . . . . . . . . . . . . 142
8.7.1.2 Potential and pros and cons . . . . . . . 143
8.7.2 Ocean current energy . . . . . . . . . . . . . . . . . . . . 144
8.7.3 Tidal energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.7.3.1 Barrage . . . . . . . . . . . . . . . . . . . . . . . . 146
8.7.3.2 History . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.7.3.3 Environmental impacts . . . . . . . . . . . 147
8.7.4 Ocean thermal energy conversion (OTEC) . . 147
8.7.4.1 Barriers . . . . . . . . . . . . . . . . . . . . . . . . 148
8.7.4.2 OTEC technologies . . . . . . . . . . . . . . 148
8.7.4.3 Other cold water applications . . . . . . 149
8.7.4.4 OTEC R&D . . . . . . . . . . . . . . . . . . . . . 149
Chapter 9
Energy storage …………………………… 151
9.1 Storage and Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.2 Types of Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.2.1 Traditional and advanced batteries . . . . . . . . . 153
9.2.1.1 Lead–acid . . . . . . . . . . . . . . . . . . . . . . 153
9.2.1.2 Sodium sulfur . . . . . . . . . . . . . . . . . . . 153
9.2.1.3 Nickel–cadmium . . . . . . . . . . . . . . . . . 154
9.2.1.4 Lithium-ion . . . . . . . . . . . . . . . . . . . . . 154
9.2.1.5 Supercapacitors . . . . . . . . . . . . . . . . . 155
9.2.2 Flow batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.2.3 Flywheels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.2.4 Superconducting magnetic energy
storage (SMES) . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.2.5 Compressed air energy storage (CAES) . . . . 159
9.2.6 Pumped storage . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.2.7 Thermal storage . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.4 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.5 Fundamental Change . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Chapter 10
Policy considerations …………………….. 165
10.1 Important Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
10.1.1 Is there a physical basis for understanding
global warming and climate change? . . . . . . 166
10.1.2 Is there documented evidence for global
warming and climate change? . . . . . . . . . . . . 168
10.1.3 Can global warming and climate change be
attributed to human activities, and what are
those activities? . . . . . . . . . . . . . . . . . . . . . . . . 170
10.1.4 What are the potential short- and long-term
impacts of global warming and climate
change with respect to water supply,
environment, and health? What is the
anticipated time scale for these
impacts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10.1.5 What can be done to mitigate the onset
and potential impacts of global warming
and climate change? . . . . . . . . . . . . . . . . . . . . 179
References ……………………………… 183
Index …………………………………… 189

……………………

Preface
This book springs from my strong conviction that clean water and clean energy are the critical elements of long-term global sustainable development. I also believe that we are experiencing the beginning of an energy revolution in these early years of the 21st century. Providing clean water requires energy, and providing clean energy is essential to reducing the environmental impacts of energy production and use. Thus, I see a nexus – a connection, a causal link – among water, energy, and environment. In recent years we have adopted the terminology of the water-energy nexus for the intimate relationship between water and energy, and similarly we can apply the term nexus to the close connections among water, energy, and environment. Thisuse of the term nexus can be, and has been, extended to include the related issues of food production and health. Dealing with, and writing about, a two-element nexus is difficult enough. In this book, I will limit my analysis and discussion to the three-element water -energy-environment nexus and leave the discussion of other possible nexus elements to those more qualified to comment.

This book also springs from my observation that while there are many existing books of a more-or-less technical nature on the three elements of this nexus, a book addressing each of them and their interdependencies in a college-level primer for a broad global and multidisciplinary audience would be valuable. Consideration of these and related issues, and options for addressing them, will be priorities for all levels of government. They will also be priorities for many levels of the
private sector in the decades ahead, both in developing and developed nations. A handbook-style primer that provides an easily read and informative introduction to, and overview of, these issues will contribute broadly to public education. It will assist governments and firms in carrying out their responsibilities to provide needed services and goods in a sustainable manner, and help to encourage young people to enter these fields. It will serve as an excellent mechanism for exposure of experts in other fields to the issues associated with the water-energy-environment nexus. Further, in addition to the audiences mentioned above, target audiences include economists and others in the finance communities who will analyze and provide the needed investment funds, and those in the development community responsible for planning and delivering services to underserved populations.
The book is organized as follows: the first chapter will be devoted to the concept of nexus and how the three elements, water, energy, and environment, are inextricably linked. This recognition leads to the conclusion that if society is to optimize their contributions to human and planetary welfare they must be addressed jointly. No longer must policy for each of these elements be considered in its own silo. Chapters 2 and 3 will be devoted to spelling out global contexts for water and energy issues, respectively. Chapter 4, on related environmental issues, will address the issues of water contamination, oil spills, fracking, radioactive waste storage, and global warming/
climate change. Chapter 5 will be a discussion of energy efficiency – i.e., the wise use of energy – and its role in limiting energy demand and its associated benefits. Chapter 6 will focus on the basics of fossil fuels – coal, oil, natural gas – which today dominate global energy demand. Chapter 7 will discuss nuclear-fission-powered electricity production, which today accounts for 10% of global electricity. It will also discuss the prospects for controlled nuclear fusion. Chapter 8 will discuss the broad range of renewable energy technologies – wind, solar,hydropower, biomass, geothermal, ocean energy – which are the basis of the now rapidly emerging energy revolution. Chapter 9 will discuss the closely related issue of energy storage. Finally, Chapter 10 will address
policy issues associated with water, energy, and environment, discuss policy history and options, and provide recommendations.

‘The Sun Is Rising in Africa and the Middle East: On the Path to a Solar Energy’ Future’ Is now available

ON March 26, 2018 Pan Stanford Publishing released the 9th book in its renewable energy series: ‘The Sun Is Rising in Africa and the Middle East: On the Path to a Solar Energy Future’. It was authored by Peter Varadi, Frank Wouters, and me, and includes important chapters by contributors Anil Cabraal, Richenda Van Leeuwen, and Wolfgang Palz. It is available in a paperback, Kindle, and digital format and can be found on several bookseller websites.

Summary (from back cover of book)
Both Africa and the Middle East are blessed with enormous solar energy resources. Electrification is an urgent need in Africa, where many of its 54 countries are among the world’s fastest-growing economies, but where half the population still has no access to electricity. Solar energy is seen as the fastest and cheapest path to addressing this need. Oil-rich countries in the Middle East are turning to solar energy to meet the growing domestic demand for electricity, freeing up hydrocarbons for export. This book describes the energy transition in Africa and the Middle East, from dependence on fossil fuels to increasing reliance on solar energy. The authors were assisted by the contributions of top experts Wolfgang Palz, Anil Cabraal, and Richenda Van Leeuwen in their efforts to provide a sound basis for understanding where solar energy is heading in these two important global regions.

I also include here the book’s more expansive Epilogue:

Epilogue

An energy transition that took its first tentative steps in the latter part of the 20th century is now unfolding rapidly in the 21st century. It will have a major impact on Africa and the Middle East along with every other part of the world. It is a transition from dependence on carbon-based fuels such as coal, oil, and natural gas to the utilization of renewable energy technologies such as solar, wind, biomass, geothermal, hydropower, and ocean technologies. All, but geothermal, which is derived from the radioactive decay heat in the core of the earth, and tidal energy caused by the moon, are direct or indirect forms of solar energy. Just as we have experienced a fossil fuel era for the past few hundred years—today the world is still more than 80% dependent on such fuels—we are now embarking on a solar energy era that taps into the enormous amounts of energy received by the earth from its sun 150 million kilometers away. To put this in context, while the earth intercepts approximately 6 million exajoules of solar radiation each year (1 exajoule = 1018 joules), and the total global energy consumption is about 600 exajoules, the fraction of the sun’s radiated energy intercepted by the earth’s disk is only 4 parts in 10 billion. The issue before us is how to utilize this diffuse energy source cost-effectively and meet, in an environmentally friendly way, the needs of an expanding global population

We are transitioning from relying on ever-scarcer sources of fossil energy to an era of unlimited, clean, and cheap energy, brought about by modern technology. This transition, which can also be seen as an energy revolution, has major implications for bringing energy services not only to urban and peri-urban areas of Africa and the ‘Middle East but also to those rural, off-grid areas currently without access to electricity. Both Africa and the Middle East are blessed with enormous solar resources, which are just beginning to be tapped, providing an opportunity to improve the lives of hundreds of millions of people. Efficient and cost-effective solar solutions and novel business models enable previously unserved people to leapfrog straight into the future of energy. This book explores some of these opportunities that will transform Africa and the Middle East in the decades ahead. It is an exciting time in the energy history of the world, and Africa and the Middle East will be important playing fields in creating that new history.

A New Book On Solar Energy In Africa and the Middle East

I have not posted on this blog web site for a while because my writing efforts were diverted to helping create a new book entitled ‘The Sun Is Rising In Africa and the Middle East: On the Road to a Solar Energy Future”. The book went to the printer earlier this week and should be available in printed form shortly. A digital version is also in the works. The book has three authors and three additional contributors, each bringing a rich perspective and set of experiences to the discussion. To whet your appetitites I include below the first few pages of the manuscript, including the Table of Contents. More information coming when the book is actually available for sale.
……………………….

THE SUN IS RISING
IN AFRICA AND THE MIDDLE EAST
On the Road to a Solar Energy Future

Peter F. Varadi | Frank Wouters | Allan R. Hoffman
Contributors
Wolfgang Palz
Anil Cabraal
Richenda Van Leeuwen

Contents

Preface​xi
Introduction​1
1.​Solar Energy in Africa and in the Middle East​3
1.1​An Overview of Energy Production and
Consumption in Africa and the Middle East​4
1.1.1​Africa​4
1.1.2​The Middle East​9
1.2​The Role of Solar Energy in Africa and in the
Middle East​13
2.​Solar Technologies for Electricity Generation​19
2.1​Solar Energy to Electricity: Solar cells​20
2.1.1​PV Modules Made of Solar Cells Created on
Si Wafers​24
2.1.2​Thin-Film PV Modules​27
2.1.3​Utilization of Various PV Production
Technologies​28
2.1.4​Solar PV Systems​28
2.2​Concentrating Thermal Solar Power Systems​31
2.3​Hybrid Solar Systems​35
3.​Electric Grid Issues in Africa and the Middle East​39
3.1​Introduction​40
3.2​Mini-grids​41
3.2.1​Devergy​42
3.2.2​Donor Support for Mini-Grids​43
3.2.3​Central vs. Individual Uses​43
3.3​Regional Power Pools in Africa​46
3.4​Gulf Cooperation Council Interconnection Authority​50
3.4.1​Middle East​50
3.4.2​GCCIA​50
3.4.3​GCCIA and Renewable Energy​52
4.​Regional and International Solar Initiatives​55
4.1​Introduction​56
4.2​Introduction to the European Development Aid:
A Personal Recollection​57
Wolfgang Palz
4.3​U.S. Energy Development Assistance to Africa and
the Middle East​63
4.3.1​Africa​63
4.3.2​Middle East​66
4.4​Lighting Africa: Evolution of World Bank Support
for Solar in Africa​68
Anil Cabraal
4.4.1​In the Beginning​68
4.4.2​Evolution​71
4.4.3​Solar PV in Africa​74
4.4.4​Lighting Africa​78
4.4.5​The Lighting Africa Program​80
4.4.6​Elements of Lighting Africa Program​81
4.4.7​Lessons Learned​84
4.4.8​The Future​86
4.4.9​Paris Climate Agreement (2015)​87
4.4.10 Climate Change Action Plan 2016-2020​88
4.4.11 IFC Scaling Solar​90
4.4.12 World Bank Off-grid Solar Projects​91
4.5​The Africa Clean Energy Corridor​93
4.5.1​The Issue at Hand​96
4.5.2​Planning​97
4.5.3​Resource Assessment​98
4.5.4​Access to Finance​99
4.5.5​Status and Way Forward​99
4.6​Global Energy Transfer Feed-in Tariff​102
4.6.1​Hydropower Projects​107
4.6.2​Cogeneration (Biomass: Bagasse from
Sugar Production)​108
4.6.3​Solar PV Projects​109
4.6.3.1​Soroti solar PV project​109
4.6.3.2​Tororo solar PV project​110
4.6.4​Wind Energy Projects​111
4.6.5​Conclusion​111
4.6.6​The Future of the GET FiT Program​112
4.6.6.1​Zambia​112
4.6.6.2​Namibia​112
4.6.6.3​Mozambique​113
4.7​Deserts as a Source of Electricity​114
5.​Existing and Emerging Solar PV Markets​119
5.1​Introduction​120
5.2​Water Pumping Utilizing Solar Electricity​121
5.2.1​Africa​126
5.2.2​Middle East​128
5.3​Solar Energy and Clean Water​131
5.3.1​Desalination​131
5.3.2​Disinfection​133
5.4​Off-Grid Telecom Towers​134
5.4.1​Off-Grid or Bad-Grid?​134
5.4.2​Tower operators​135
5.4.3​Renewable Energy Towers​136
5.4.4​Tower ESCOs​137
5.5​Internet with PV​139
5.5.1​Internet in Africa​139
5.5.2​NICE, the Gambia​140
5.6​Solar Energy and Mining​143
5.7​Tele-Medicine and Tele-Education​146
6.​Financing: The Key to Africa and the Middle East’s
Solar Energy Future​151
6.1​Introduction​152
6.2​Solar for Energy Access in Africa​153
Richenda Van Leeuwen
6.2.1​“Below,” “Beyond,” and “Off” the Grid:
Powering Energy Access​154
6.2.2​Why Solar for Energy Access in Africa?​156
6.2.3​Why Hasn’t the Grid Been Extended
across Africa?​156
6.2.4​Global Catalysts: Renewed Attention at
the UN and Beyond​157
6.2.5​Market Expansion​160
6.2.6​Future Directions​162
6.3​Financing Solar in Africa and the Middle East​164
6.3.1​Size Matters​165
6.3.2​Risk​167
6.3.3​Financing Off-Grid​167
6.4​Pay-As-You-Go and Community Solar​170
6.4.1​Where the Grid Doesn’t Reach​170
6.4.2​Solar Products​170
6.4.3​Solar Home Systems​174
6.4.4​M-Kopa​174
6.5​Large-Scale Auctions​178
6.5.1​Introduction​178
6.5.2​Sealed-Bid Auction​179
6.5.3​Descending Clock Auctions​179
6.5.4​Hybrid Auctions​179
6.5.5​South Africa​180
6.5.6​IFC’s Scaling Solar​182
6.5.7​Zambia​184
6.5.8​Epilogue​185
7.​Local Value Creation​187
7.1​Local Value Creation: Analysis​188
7.1.1​Local Content Requirements​189
7.1.2​Discussion​190
7.2​Nascent Manufacturing Sector​192
7.2.1​Fosera​193
7.2.2​Solar Manufacturing in the Middle East​196
7.2.3​Noor Solar Technologies​197
8.​Current and Future Solar Programs in Africa and in the
Middle East​199
8.1​Introduction​200
8.2​Africa​201
8.2.1​Electricity in Sub-Saharan Africa​202
8.2.2​Nigeria​204
8.2.2.1​Large grid-connected projects
in Nigeria​205
8.2.2.2​Feed-in tariffs​206
8.2.2.3​Net metering​206
8.2.2.4​Other solar applications​207
8.2.2.5​Discussion​207
8.2.3​Uganda​208
8.2.4​Namibia​210
8.2.4.1​Utilization of renewable energy
to produce electricity​212
8.2.4.2​Biomass​212
8.2.4.3​Wind​213
8.2.4.4​Concentrated Solar Power (CSP)​213
8.2.4.5​PV Systems​213
8.2.4.6​Commercial and other
organizations​216
8.2.4.7​Summary​218
8.2.5​Senegal​218
8.2.5.1​Impact of solar home systems
in Senegal​219
8.2.5.2​Solar energy in the Middle East
and North Africa​220
8.2.6​Morocco​221
8.2.7​Egypt​223
8.3​The Middle East​225
8.3.1​Jordan​225
8.3.2​United Arab Emirates​225
8.3.3​Saudi Arabia​228
8.4​Into the Future​231
Epilogue​233
Glossary​235
About the Authors​239
About the Contributors​241
Index​243

The Vulnerable Society

This article is on a topic I have touched on before in this blog – the vulnerability of our infrastructure. The purpose of the article is twofold: to gather in one place my various thoughts on infrastructure vulnerability, and to issue a call for action to reduce this vulnerability before our infrastructure is compromised and we have to pay an unacceptably high price. This concern is valid for the U.S. and for other countries highly dependent on infrastructure.

………………………………..

The Vulnerabile Society

This article is a call for action on an issue that has important implications for the U.S. – the fact that infrastructure on which we are highly dependent can be compromised by deliberate action by our enemies. I am not raising a new concern, but one that, despite some attention in recent years, is still not receiving the level of attention from public officials and the private sector that I believe it desperately needs. Failure to adequately address this issue can have dire consequences for our nation, and for other nations that find themselves in similar. situations.

I have written about this issue in bits and pieces before, starting in 2013, and continually return to the subject because I see too little happening to address a serious and growing problem. That problem is the vulnerability to cyber attacks on our infrastructure, a problem that genuinely scares me. This piece will pull my thoughts together in one place and review my concerns, which are now shared by a growing number of people as more and more cyber attacks occur and their harmful impacts are identified. I will also point out out the ways in which I believe this vulnerability can be mitigated, although complete elimination of cyber threats is not realistic. However, it is my strong belief that we can and must do a lot better at reducing these risks than we are now doing. The price for not doing better is potentially very high.
Infrastructure has been defined as “basic physical and organizational structures needed for the operation of a society or enterprise, or the services and facilities necessary for an economy to function.” The term is often used for the physical structures that support a society, such as roads, bridges, water supply, sewers, electrical grids, and telecommunications facilities.
A major concern is that most of our electricity supply today comes from large, centralized power plants that are poorly protected from attack, if at all, and most electrical power is distributed over above-ground power lines that form a highly interconnected grid subject to falling trees, storm damage, or sabotage. It wouldn’t take much to disable a portion of that grid and remove power from large numbers of utility customers. This concern is exacerbated by increasing computer control of the grid and its vulnerability to malevolent hacking. Given today’s level of protection against such hacking I am very worried.
It is important to emphasize that it is not electricity per se that is the valuable commodity but the services that access to electricity makes possible – lighting, heating, cooling, water services, manufacturing, transportation, and communications. Energy has always been critical to human activities, but what differentiates modern societies is the energy beyond human and animal power required to provide increasingly high levels of services. In the developed world we are totally dependent on these services and it is in society’s interest to provide these services in the most reliable way with the least amount of energy, to minimize costs and environmental and national security impacts. My growing concern is, that with steadily increasing electrification, including the electrification of transportation, and growing dependence on computer control and internet interconnection, that those many aspects of society that are dependent on electricity are increasingly vulnerable to serious disruption and blackmail. It is minimizing the risks associated with this vulnerability that must become a high priority focus of modern nations.
Another vulnerability, in addition to risks arising from cyber attacks, sabotage and military attacks, and one that has received some attention of late, is the impact that an electromagnetic pulse arising from a solar flare could have on our power systems. Interconnected power lines can act as a giant antenna that captures this electromagnetic energy and overloads the system and burns out power lines, transformers, and other equipment. This occurred in the 1860’s and burned out many telegraph lines. While physical components can be replaced it takes time, during which most people will be without power unless they have a backup generator. This is especially true for replacing the large power transformers in the system that are quite expensive and not routinely inventoried.
Still another area of concern is disruptions to the U.S. water supply, which have implications for public health, food production, and other public services. It is well known that after natural disasters one of the first infrastructure failures is that of the clean water distribution system. My growing concern is that we are not doing enough to make sure nobody is compromising or poisoning that water supply, which is largely unprotected. After 911 this topic began to get some increased attention from U.S. government agencies.
Another area of concern is telecommunications. Many of our communication systems today – telephone, television, Internet, GPS, weather forecasting, tele-education and tele-medicine – are dependent on solar-powered satellite links and any disruption of these links, whether inadvertent or deliberate, can disable critical elements of our society. These links provide unique and invaluable services, but the satellites are vulnerable to collisions with micrometeorites, disruption by solar flare radiation, sabotage and acts of war, and simply wearing out. And the number of links is increasing steadily as more and more satellites are placed into orbit.
It is well known that many public and private telecom networks are under regular cyber attack, by government-supported and private individuals. Many examples can be found, including the Stuxnet attack on Iranian centrifuges, the North Korean attack on SONY, recent ransomeware attacks, and the Russian attacks on U.S. and other national elections. The point is that we and others are highly vulnerable to cyber attacks, and unless we take steps to adequately protect our web-connected systems from these interventions I fear we will pay a terrible price. Too many of our public systems are now remotely controlled by wireless networks, and someone bent on doing damage and who is expert in hacking can make us hostage if our systems are penetrated. My concern is less with SONY than with our centralized electric utility systems that power our homes, businesses, hospitals, water supply systems, and many other aspects of modern life.
Is it difficult to provide this cyber protection? The simple answer is yes, for several reasons: the growing numbers of wireless networks and cyber hackers, the cost of counteracting malicious hacking, the availability of trained professionals to address the hacking issue, and what I have long considered a major problem – the inability to focus enough attention on cyber security issues.
Let me discuss each of these barriers in turn. Wireless networking is growing because it offers many advantages – reduced wiring requirements and related costs, remote operation and reduced manpower requirements, ability to monitor more variables continuously and control systems to a finer degree. Disadvantages arise when inadequate attention is paid to preventing hacker penetration into the network, thus allowing disruption of normal operations or allowing hackers to take control of the network. Also, the number of capable hackers is increasing rapidly. Many schemes have been proposed for restricting unauthorized access to a network, usually using passwords, but often these passwords are not adequate to stop an experienced hacker and most people are resistant to remembering long, complicated passwords. Many companies are also not yet convinced of the need to spend the money on sophisticated protection systems, and some may see the consequences of a hacking as less costly than the required investment.
Costs are inherent in any attempt to prevent hacking, ranging from software and hardware costs to labor costs. There is some indication that SONY, an electronics company, spent too little on protection costs by underestimating the potential threat to its cyber systems. It surely is a mistake it won’t make again, and the SONY experience, and others, should serve as wake up calls to other corporate and government bodies as well as individual consumers.
The trained manpower issue is a critical one. As has been noted in Congressional testimony, the vast majority of people available today to address cyber security issues are the ones who designed and implemented the current vulnerable information technology system. Should they be the ones to try and fix it, or do we need newly-trained cyber experts who are not so closely linked to today’s operating modes? Clearly there are people who have the requisite high level skills – think NSA – but are they available broadly on a global basis? Expertise in cyber security is already in high demand and will be in even greater demand in the future as more and more functions are digitized and the Internet-of-All-Things becomes a part of everyday life.
Finally, let me address the issue of focusing attention on cyber security issues. It has not been easy. I have personally observed resistance to addressing cyber security issues by the U.S. military and private electric utilities, largely due to lack of familiarity with required capabilities and associated costs. Fortunately, this is beginning to change now that the consequences of not being vigilant are becoming obvious.
Let me now tie all these concerns to our electric unity system. Today, and for most of the past century, it has been a highly centralized grid system where large central power plants distributed electricity radially via high voltage transmission lines and lower voltage local distribution lines. It was a ‘dumb’ system with little overall control and when one part of the grid went down lots of people lost their electricity supply until the grid problem could be fixed. Today we are developing a ‘smart’ grid with lots of electronic controls that allow isolation of problem areas to minimize the number of people affected, that facilitates transfer of power from one grid region to another, and that allows utilities access to consumer homes and businesses for better balancing of supply and demand. These ‘smart grid’ features offer many advantages to suppliers and consumers, ranging from improved energy security to reduced costs. The downside is that electronic networks controlling these various features of the smart grid can be penetrated by sophisticated hackers, and my impression is that until fairly recently utility executives were not paying sufficient attention to cyber security issues. We can hope that this is no longer the case, but we all know of utilities that have underinvested in protecting their systems – e.g., by not trimming back trees that could fall on and disrupt power lines during storms, and not putting more of their power lines underground.
The good news is that some federal and state government and quasi-governmental agencies are beginning to take the issue seriously. Reports are now available that address Black Sky Day possibilities, which are defined as “extraordinary and hazardous catastrophes utterly unlike the blue sky days during which utilities usually operate.”
An important example of this increased government attention was the release in January 2017 of the second installment of the Department of Energy’s Quadrennial Energy Review. These reports, started in 2013, survey the U.S. energy system. The first installment dealt broadly with the entirety of the nation’s energy infrastructure, which goes far beyond electricity to encompass natural gas and oil pipelines, storage infrastructure, and other facets. This one focused on electricity, the nation’s rapidly changing electrical grid, and the need for new action to protect against evolving cyber security threats.
The document noted the sprawling scale of U.S. electric infrastructure – 7,700 power plants, 55,800 substations, 707,000 miles of high-voltage transmission lines, and 6.5 million additional miles of local lines spread out from the substations. It pointed out that dramatic change is sweeping over the sector and that this “rapidly evolving system” is in major need of modernization and upgrades to keep pace
“There’s the weak-link issue for the whole system,” Energy Secretary Ernest Moniz said in an interview when the report was released. “The reality is, for a lot of rural, smaller utilities, it’s a very difficult job to have the kind of expertise that will be needed in terms of cyber, so we suggest for example, grant programs to help with training, to help with analytical capacity in these situations.” “The economy would just take an enormous hit” from a successful grid attack, he said. The report also pointed out that cyberthreats are not the only challenge facing the grid. It warned that extreme weather events triggered by human-caused climate change also makes the system vulnerable.
The bottom line is that the integrity and reliability of many important infrastructure systems are at risk and a national commitment to minimizing these risks is a critical need. The primary responsibility of elected officials is to protect the U.S. public, and indications to date are that not enough is yet being done to meet that responsibility with respect to cyber threats. Red lights are flashing but is this to be another example of where the U.S. response is laggard until a crisis erupts? The sooner we address the following issues, via public education, legislation, and public and private practice, the more secure our energy and energy-dependent systems will be:
– identifying protection against cyber attacks as a national priority by both the President and the Congress.
– enhanced education of the public about the threat and implications of cyber attacks.
– engaging the government and private sector in a joint effort to develop new barriers to cyber network penetration that take into account both privacy concerns and the needs of the intelligence community to identify and protect us against internal and external threats.
– the need to focus greater attention on training of an increased number of cyber technology experts, much as we did in the aftermath of Sputnik in the late 1950s when the need for more trained scientists became evident.
– acceleration of the trend to distributed power generation, to reduce the risks of outages on today’s highly interconnected grid system that can lead to widespread loss of power. Distributed generation, in a smart grid system, can isolate (‘island’) local sources of lost power and keep the rest of the connected grid functioning. Renewable generation sources are inherently distributive and fit well into this category.

Of course the issue of global warming and climate change must also be addressed for reasons that go beyond reducing vulnerability of our power grid to extreme weather events. However, that is a topic that is receiving extensive attention elsewhere and one I will not discuss in this article.

N m

Cyber Security: Revisiting a Critical Issue

Three previous blog posts have mentioned or addressed in detail this critical issue which I believe represents a major vulnerability of U.S. electrical power and other industrial systems:
– ‘Grids, Smart Grids and More Grids: What’s Coming’,
July 7, 2014
– ‘The Vulnerability of Our Electric Utility System to
Cyber Attacks’, January 28, 2015
– ‘Returning to an Important Subject: The Vulnerability of
the U.S. Electrical Grid’, August 31, 2015

I mention this history because today (January 6, 2017) the Washington Post published the following article on the same subject, reporting on the results of the Quadrennial Energy Review just published by the U.S. Department of Energy. It focuses much needed attention on this growing vulnerability.

New Obama report warns of changing ‘threat environment’ for the electricity grid
By Chris Mooney

At a time of heightened focus on U.S. cybersecurity risks, the Energy Department released a comprehensive report on the nation’s rapidly changing electrical grid Friday that calls for new action to protect against evolving threats.

The agency urged policymakers to grant regulators new emergency powers should threats become imminent, among other recommendations.

The document notes the sprawling scale of U.S. electric infrastructure: The nation has 7,700 power plants (ranging from coal-fired to nuclear) and 55,800 substations. Some 707,000 miles of high-voltage transmission lines link the two, and then 6.5 million additional miles of local lines spread out from the substations.

Dramatic change is sweeping over the sector. For instance, so-called smart meters are being added to bring more online control to the electrical grid. And more and more households are adding solar systems to their rooftops, providing new connecting points. A “rapidly evolving system” is in major need of modernization and upgrades to keep pace, the report says.

“There’s the weak-link issue for the whole system,” Energy Secretary Ernest Moniz said in an interview to highlight the report. “The reality is, for a lot of rural, smaller utilities, it’s a very difficult job to have the kind of expertise that will be needed in terms of cyber, so we suggest for example, grant programs to help with training, to help with analytical capacity in these situations.”

“The economy would just take an enormous hit” from a successful grid attack, he said.

The document is the second installment of the Quadrennial Energy Review, a series of wide-ranging reports surveying the entire U.S. energy system that the department began after President Obama announced new climate change policies in 2013. The first installment dealt broadly with the entirety of the nation’s energy infrastructure, which goes far beyond electricity to encompass natural gas and oil pipelines, storage infrastructure, and other facets. This one zooms in on electricity.

It highlights not only cyberattacks on electric infrastructure in Ukraine in late December of 2015 — in which three Ukrainian utilities were hit by synchronized cyberattacks, leading to power losses for 225,000 customers — but also the Oct. 21, 2016, event that used in-home Internet-connected devices, collectively, to lead a large denial-of-service attack.

“We know that this is not just a theoretical concern,” Moniz said.

The report calls for utilities to take engage in “deliberate risk management activities” as the electric power sector becomes increasingly interconnected with global communications networks.

“The threat environment is also changing — decision makers must make the case for investments that mitigate catastrophic, high-impact, low-probability events,” the report notes.

Cyberthreats are not the only challenge facing the grid. The report warns that extreme weather events triggered by human-caused climate change also makes the system vulnerable.

On grid security, the report contains myriad recommendations, including amending the Federal Power Act to give the Energy Department the ability to issue a “grid-security emergency order,” and also giving the Federal Energy Regulatory Commission new powers to bolster reliability standards that affect electricity-sector operators “if it finds that expeditious action is needed to protect national security in the face of fast-developing new threats to the grid.”

In the interview, Moniz said he hoped that under the next administration, the Quadrennial Energy Review process would continue, noting that the last installment of the report has already triggered major action. Of its 63 recommendations, the DOE has found, 21 are already “fully or partially reflected in Federal law.”

“We think that the second volume hopefully is going to have the same kind of track record,” Moniz said. “That’s the basis upon which I certainly hope, and will certainly recommend, presumably to [Energy secretary nominee Rick Perry], that the new administration take ownership of this, and keep it going.”

The DOE press release announcing the report can be found at
https://energy/gov/articles/administration-releases-second-installment-quadrennial-energy-review and the full report with related analyses can be found at energy.gov/QER.