New Book: ‘Water, Energy, and Environment – A Primer’

After a long hiatus from blogging while I worked on a new book, I am pleased to announce that the book ‘Water, Energy, and Environment – A Primer’ will be published by International Water Association Publishing (IWAP) on February 18th (2019). It will be available in both printed and digital form, and the digital version will be downloadable for free as an Open Access (OA) document.

To access the free digital version go to IWAP’s OA website on Twitter: https://twitter.com/IWAP_OA.

Attached below is front material from the book, its preface and table of contents. Designed to serve as a basic and easily read introduction to the linked topics of water, energy, and environment, it is just under 200 pages in length, a convenient size to throw into a folder, a briefcase, or a backpack. Its availability as an OA document means that people all over the world with access to the internet will have access to the book and its 10 chapters.

With the completion of the book I plan to return to a regular schedule of blogging.
…………………………..
Contents
Preface ………………………………….. xi
Acknowledgement ……………………….. xv
Acronyms ……………………………… xvii
Epigraph ……………………………….. xxi
Chapter 1
Water and its global context …………………. 1
1.1 Earth’s Water Resources . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Saline Water and Desalination Processes . . . . . . . . . . . 2
1.3 Energy Requirements and Costs of Desalination . . . . . 5
1.4 Demand for Freshwater . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Implications of Limited Access to Freshwater . . . . . . . . . 9
1.6 Actions to Increase Access to Freshwater . . . . . . . . . . 10
1.7 Gender Equity Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Chapter 2
Energy and its global context ……………….. 13
2.1 Energy’s Role in Society . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Energy Realities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 What is Energy? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Energy Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Important questions . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 How is energy used? . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Electrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Chapter 3
Exploring the linkage between water
and energy ……………………………….. 23
3.1 Indirect Linkages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 The Policy Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 The Conundrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Addressing the Conundrum . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 The Need for Partnership . . . . . . . . . . . . . . . . . . . . . . . . . 27
Chapter 4
Energy production and its consequences for
water and the environment …………………. 29
4.1 Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 More on Climate Change . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Environment and Religion . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 The theocentric worldview . . . . . . . . . . . . . . . . . 33
4.3.2 The anthropocentric worldview . . . . . . . . . . . . . 34
4.3.3 Other worldviews . . . . . . . . . . . . . . . . . . . . . . . . . 34
Chapter 5
Energy options ……………………………. 37
5.1 Fossil Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Nuclear Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Geothermal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 The Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5.1 Energy demand . . . . . . . . . . . . . . . . . . . . . . . . . . 40
vi Water, Energy, and Environment – A Primer
5.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5.3 Saving energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5.4 Accelerating implementation . . . . . . . . . . . . . . . 43
5.5.5 Energy Star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5.6 The lighting revolution . . . . . . . . . . . . . . . . . . . . . 45
5.5.7 Energy efficiency in buildings . . . . . . . . . . . . . . . 48
5.5.7.1 Zero energy buildings . . . . . . . . . . . . . 48
5.5.7.2 Electrochromic windows . . . . . . . . . . . 52
5.6 Energy Efficiency in Industry . . . . . . . . . . . . . . . . . . . . . . 54
5.7 Energy Efficiency in Transportation . . . . . . . . . . . . . . . . 56
Chapter 6
Fossil fuels ………………………………. 61
6.1 Coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.1 Carbon capture and sequestration . . . . . . . . . . 63
6.1.2 A conundrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Petroleum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.1 Oil spills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.2 Peak oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.1 Methane hydrates . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.2 Fracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Chapter 7
Nuclear power ……………………………. 85
7.1 Nuclear Fission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.1 Fission fundamentals . . . . . . . . . . . . . . . . . . . . . . 85
7.1.2 Introduction to nuclear issues . . . . . . . . . . . . . . . 87
7.1.3 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Nuclear Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2.1 Fusion fundamentals . . . . . . . . . . . . . . . . . . . . . . 91
7.2.2 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.3 Barriers to Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2.4 Pros and cons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2.5 Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Chapter 8
Renewable energy ………………………… 97
8.1 The Sun’s Energy Source and Radiation
Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2 Direct Solar Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.2.1 Photovoltaics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.2.2 Concentrating solar power (CSP) . . . . . . . . . . 108
8.2.2.1 Power tower . . . . . . . . . . . . . . . . . . . . 109
8.2.2.2 Linear concentrator . . . . . . . . . . . . . . 110
8.2.2.3 Dish engine . . . . . . . . . . . . . . . . . . . . . 111
8.2.2.4 CSTP history . . . . . . . . . . . . . . . . . . . 112
8.2.2.5 Advantages and disadvantages . . . 112
8.2.2.6 Thermal storage . . . . . . . . . . . . . . . . . 113
8.2.2.7 Current status . . . . . . . . . . . . . . . . . . . 114
8.2.2.8 Concentrating photovoltaics (CPV) . 115
8.3 Solar Power Satellite (SPS) System . . . . . . . . . . . . . . 116
8.4 Hydropower and Wind Energy . . . . . . . . . . . . . . . . . . . 119
8.4.1 Hydropower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.4.2 Wind energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.4.2.1 Onshore wind . . . . . . . . . . . . . . . . . . . 121
8.4.2.2 History . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.4.2.3 An onshore limitation . . . . . . . . . . . . . 124
8.4.2.4 Offshore wind . . . . . . . . . . . . . . . . . . . 125
8.5 Biomass Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.5.1 Sources of biomass . . . . . . . . . . . . . . . . . . . . . . 129
8.5.2 Wood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.5.3 Biofuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.5.4 Algae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.5.5 Biochar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.5.6 The future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.6 Geothermal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.6.1 Sources of geothermal energy . . . . . . . . . . . . . 134
8.6.2 Manifestations of geothermal energy . . . . . . . 135
8.6.3 Uses of geothermal energy . . . . . . . . . . . . . . . . 135
8.6.3.1 Geothermal power generation . . . . . 136
8.6.3.2 Ground-source heat pumps . . . . . . . 138
8.6.4 An unusual source of geothermal energy . . . . 140
Ocean Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.7.1 Wave energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.7.1.1 Wave energy conversion
devices . . . . . . . . . . . . . . . . . . . . . . . . 142
8.7.1.2 Potential and pros and cons . . . . . . . 143
8.7.2 Ocean current energy . . . . . . . . . . . . . . . . . . . . 144
8.7.3 Tidal energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.7.3.1 Barrage . . . . . . . . . . . . . . . . . . . . . . . . 146
8.7.3.2 History . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.7.3.3 Environmental impacts . . . . . . . . . . . 147
8.7.4 Ocean thermal energy conversion (OTEC) . . 147
8.7.4.1 Barriers . . . . . . . . . . . . . . . . . . . . . . . . 148
8.7.4.2 OTEC technologies . . . . . . . . . . . . . . 148
8.7.4.3 Other cold water applications . . . . . . 149
8.7.4.4 OTEC R&D . . . . . . . . . . . . . . . . . . . . . 149
Chapter 9
Energy storage …………………………… 151
9.1 Storage and Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.2 Types of Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.2.1 Traditional and advanced batteries . . . . . . . . . 153
9.2.1.1 Lead–acid . . . . . . . . . . . . . . . . . . . . . . 153
9.2.1.2 Sodium sulfur . . . . . . . . . . . . . . . . . . . 153
9.2.1.3 Nickel–cadmium . . . . . . . . . . . . . . . . . 154
9.2.1.4 Lithium-ion . . . . . . . . . . . . . . . . . . . . . 154
9.2.1.5 Supercapacitors . . . . . . . . . . . . . . . . . 155
9.2.2 Flow batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.2.3 Flywheels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.2.4 Superconducting magnetic energy
storage (SMES) . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.2.5 Compressed air energy storage (CAES) . . . . 159
9.2.6 Pumped storage . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.2.7 Thermal storage . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.4 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.5 Fundamental Change . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Chapter 10
Policy considerations …………………….. 165
10.1 Important Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
10.1.1 Is there a physical basis for understanding
global warming and climate change? . . . . . . 166
10.1.2 Is there documented evidence for global
warming and climate change? . . . . . . . . . . . . 168
10.1.3 Can global warming and climate change be
attributed to human activities, and what are
those activities? . . . . . . . . . . . . . . . . . . . . . . . . 170
10.1.4 What are the potential short- and long-term
impacts of global warming and climate
change with respect to water supply,
environment, and health? What is the
anticipated time scale for these
impacts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10.1.5 What can be done to mitigate the onset
and potential impacts of global warming
and climate change? . . . . . . . . . . . . . . . . . . . . 179
References ……………………………… 183
Index …………………………………… 189

……………………

Preface
This book springs from my strong conviction that clean water and clean energy are the critical elements of long-term global sustainable development. I also believe that we are experiencing the beginning of an energy revolution in these early years of the 21st century. Providing clean water requires energy, and providing clean energy is essential to reducing the environmental impacts of energy production and use. Thus, I see a nexus – a connection, a causal link – among water, energy, and environment. In recent years we have adopted the terminology of the water-energy nexus for the intimate relationship between water and energy, and similarly we can apply the term nexus to the close connections among water, energy, and environment. Thisuse of the term nexus can be, and has been, extended to include the related issues of food production and health. Dealing with, and writing about, a two-element nexus is difficult enough. In this book, I will limit my analysis and discussion to the three-element water -energy-environment nexus and leave the discussion of other possible nexus elements to those more qualified to comment.

This book also springs from my observation that while there are many existing books of a more-or-less technical nature on the three elements of this nexus, a book addressing each of them and their interdependencies in a college-level primer for a broad global and multidisciplinary audience would be valuable. Consideration of these and related issues, and options for addressing them, will be priorities for all levels of government. They will also be priorities for many levels of the
private sector in the decades ahead, both in developing and developed nations. A handbook-style primer that provides an easily read and informative introduction to, and overview of, these issues will contribute broadly to public education. It will assist governments and firms in carrying out their responsibilities to provide needed services and goods in a sustainable manner, and help to encourage young people to enter these fields. It will serve as an excellent mechanism for exposure of experts in other fields to the issues associated with the water-energy-environment nexus. Further, in addition to the audiences mentioned above, target audiences include economists and others in the finance communities who will analyze and provide the needed investment funds, and those in the development community responsible for planning and delivering services to underserved populations.
The book is organized as follows: the first chapter will be devoted to the concept of nexus and how the three elements, water, energy, and environment, are inextricably linked. This recognition leads to the conclusion that if society is to optimize their contributions to human and planetary welfare they must be addressed jointly. No longer must policy for each of these elements be considered in its own silo. Chapters 2 and 3 will be devoted to spelling out global contexts for water and energy issues, respectively. Chapter 4, on related environmental issues, will address the issues of water contamination, oil spills, fracking, radioactive waste storage, and global warming/
climate change. Chapter 5 will be a discussion of energy efficiency – i.e., the wise use of energy – and its role in limiting energy demand and its associated benefits. Chapter 6 will focus on the basics of fossil fuels – coal, oil, natural gas – which today dominate global energy demand. Chapter 7 will discuss nuclear-fission-powered electricity production, which today accounts for 10% of global electricity. It will also discuss the prospects for controlled nuclear fusion. Chapter 8 will discuss the broad range of renewable energy technologies – wind, solar,hydropower, biomass, geothermal, ocean energy – which are the basis of the now rapidly emerging energy revolution. Chapter 9 will discuss the closely related issue of energy storage. Finally, Chapter 10 will address
policy issues associated with water, energy, and environment, discuss policy history and options, and provide recommendations.

A Call to Arms Re Investing In Our Energy Future

The attached article by Steven Ratner appeared in the March 27, 2018 issue of the New York Times. It raises important questions about how the U.S.is preparing for future economic competition with other countries, particularly China. The questions are not new, but Ratner’s article is a timely reminder that our national leaders need to look forward and make and faciilitate investments now that will benefit us in the future. A dysfunctional and short-sighted Congress in recent years, and now a dysfunctional and short-sighted presidential Administration, are putting the nation’s long-term economic position and leadership role in jeopardy.

I say this for the following reasons: the world is in the early stages of an inevitable transition from dependence on fossil fuels (80% dependence today) to steadily increasing reliance on renewable energy in its various forms. After several decades of development triggered by the OPEC-imposed Oil Embargo of 1973-74, solar and wind energy are now rapidly joining hydropower as significant contributors to global electricity supply. Other forms of renewable energy – geothermal, biomass, ocean – are also experiencing active development. As global populations and water and energy demands increase as we move further into the 21st century, and there is greater attention to reducing the threat of global warming, the markets for renewable technologies will grow significantly. In the past the U.S. has led the movement toward greater use of renewable energy, and had expectations that it would lead the resulting market opportunities. This is no longer true: the U.K. and other European countries lead the world in the development and deployment of offshore wind, and China leads the world in production of solar PV panels and wind turbines. China has clear ambitions to take full advantage of rapidly emerging renewable energy markets, and is now well positioned to soon take the lead in offshore wind deployment. Less impressively, the U.S. only recently placed its first offshore wind turbines in Rhode Island.

The long-term economic consequences are clear: unless the U.S. takes a more aggressive stance toward achieving a major share of these emerging markets, there will be reduced U.S. economic growth and loss of jobs that will go overseas. What is lacking is a clear national commitment to facilitating and expediting a transition to a renewable energy future. This requires action by the U.S. COngress and leadership from the Executive Branch, both of which are now lacking. The GOP-controlled Congress and the U.S. President are still in the thrall of the fossil fuel industry and renewable energy in the U.S. Is not getting the support it deserves. Chinese and European governments are taking a long-term, economically sensible view. Ratner’s article points out that, at this point, the U.S. is not.

………………………………………..

Is China’s Version of Capitalism Winning?
查看简体中文版 查看繁體中文版
Steven Rattner MARCH 27, 2018

President Trump’s attacks on Chinese trade practices may be garnering the headlines, but underpinning that dispute lies a more consequential struggle, between liberal democracy and state-directed capitalism.

Of late, it’s a competition in which the Chinese approach has been delivering the more robust economic result. Indeed, implicit in the ferocity of the Trump administration’s attacks on China’s protectionism is the success of that nation’s economy.

Skeptics notwithstanding, China’s model, which has brought more people out of poverty faster than any other system in history, continues to flourish, as I’ve seen firsthand in a decade of regular visits. Meanwhile, liberal democracy — the foundation of the post-World War II order — is under pressure, most significantly for having failed in recent years to deliver broadly higher standards of living.

Here’s one stark example: Last week, Congress finally managed to pass appropriations legislation for the current fiscal year — six months after the budget year began. The 2,232-page bill was cobbled together in a frenzy, without any discussion of national priorities or careful examination of the expenditures.

In contrast, China is driving hard toward its “Made in China 2025” plan, an ambitious set of objectives to upgrade Chinese industry so that, among other things, it can manufacture its own high-value components, like semiconductors. And while we retreat internationally, China’s One Belt One Road Initiative will physically connect China to more than 65 percent of the world’s population.

If you think we have trade problems with China now, just wait.

To be sure, China is a long way from overtaking the United States. Its gross domestic product per person is just $9,380, compared with $61,690 in the United States. Less visible than the sleek modern skyscrapers that now dominate China’s cityscapes are the 700 million people — about half of China’s population — who still live on $5.50 per day or less.

And China’s mercantilist trade practices are indefensible, particularly its use of non-tariff barriers to discourage foreign companies from coming to China, its insistence that non-Chinese companies share their technology, its outright theft of intellectual property and on and on.

That said, I’m confident that China’s mixed system would have produced formidable growth even without these predatory practices. As China marches forward, Washington feels like it’s standing still.

Perhaps the only policy area on which President Trump and the Democrats agree is the need to fix the nation’s crumbling infrastructure. And yet, 14 months after the president was inaugurated, nothing has happened (except for the release of a plan that was quickly derided).

For its part, China continues to build airports, subway systems, renewable-energy facilities and the like at a torrid pace. Even its longstanding pollution problem is being addressed. In the past four years, China has succeeded in cutting concentrations of one pollutant — fine particulates — by 32 percent, roughly what it took the United States 12 years to achieve after passage of the Clean Air Act in 1970.

Next up, artificial intelligence. In mid-2017, China announced a plan to become a global leader in artificial intelligence by 2030, sending shudders through American policy circles. One research report estimated that A.I. could add 1.6 percentage points to China’s growth by 2035.

At the moment, the United States remains the world leader in A.I., and our scientists are working hard to achieve further advances. But from the Trump administration: silence, notwithstanding a parting warning and a call to arms from President Barack Obama’s team.

As a capitalist, I’ve never believed in excessive government intervention in the economy. One of America’s greatest strengths has always been its flourishing private sector. But in a complex, global economy, the public sector should play an important role, and ours just isn’t.

China, despite its Communist heritage, understands the benefits of incorporating a robust free-enterprise element. Beijing bustles with internet entrepreneurs. Venture capitalists are pouring vast sums into a dizzying array of start-ups, including in prosaic industries like retailing. And an increasing number of “national champions” are expanding beyond China’s borders.

Don’t get me wrong. I’m not suggesting that we rewrite our Constitution to emulate China. And I certainly understand the loss of freedom and civil liberties under the Chinese system. But that doesn’t mitigate the need for us to get our government to perform the way it did in passing the New Deal and Lyndon Johnson’s Great Society.

When Russia launched its first Sputnik satellite in 1957, our response was to redouble our efforts and win the race to the moon. While the merits of punishing China for its unfair trade practices are strong, that’s hardly the most important reaction to its extraordinary economic success.

Steven Rattner, a counselor in the Treasury Department under President Barack Obama, is a Wall Street executive and a contributing opinion writer.

‘The Sun Is Rising in Africa and the Middle East: On the Path to a Solar Energy’ Future’ Is now available

ON March 26, 2018 Pan Stanford Publishing released the 9th book in its renewable energy series: ‘The Sun Is Rising in Africa and the Middle East: On the Path to a Solar Energy Future’. It was authored by Peter Varadi, Frank Wouters, and me, and includes important chapters by contributors Anil Cabraal, Richenda Van Leeuwen, and Wolfgang Palz. It is available in a paperback, Kindle, and digital format and can be found on several bookseller websites.

Summary (from back cover of book)
Both Africa and the Middle East are blessed with enormous solar energy resources. Electrification is an urgent need in Africa, where many of its 54 countries are among the world’s fastest-growing economies, but where half the population still has no access to electricity. Solar energy is seen as the fastest and cheapest path to addressing this need. Oil-rich countries in the Middle East are turning to solar energy to meet the growing domestic demand for electricity, freeing up hydrocarbons for export. This book describes the energy transition in Africa and the Middle East, from dependence on fossil fuels to increasing reliance on solar energy. The authors were assisted by the contributions of top experts Wolfgang Palz, Anil Cabraal, and Richenda Van Leeuwen in their efforts to provide a sound basis for understanding where solar energy is heading in these two important global regions.

I also include here the book’s more expansive Epilogue:

Epilogue

An energy transition that took its first tentative steps in the latter part of the 20th century is now unfolding rapidly in the 21st century. It will have a major impact on Africa and the Middle East along with every other part of the world. It is a transition from dependence on carbon-based fuels such as coal, oil, and natural gas to the utilization of renewable energy technologies such as solar, wind, biomass, geothermal, hydropower, and ocean technologies. All, but geothermal, which is derived from the radioactive decay heat in the core of the earth, and tidal energy caused by the moon, are direct or indirect forms of solar energy. Just as we have experienced a fossil fuel era for the past few hundred years—today the world is still more than 80% dependent on such fuels—we are now embarking on a solar energy era that taps into the enormous amounts of energy received by the earth from its sun 150 million kilometers away. To put this in context, while the earth intercepts approximately 6 million exajoules of solar radiation each year (1 exajoule = 1018 joules), and the total global energy consumption is about 600 exajoules, the fraction of the sun’s radiated energy intercepted by the earth’s disk is only 4 parts in 10 billion. The issue before us is how to utilize this diffuse energy source cost-effectively and meet, in an environmentally friendly way, the needs of an expanding global population

We are transitioning from relying on ever-scarcer sources of fossil energy to an era of unlimited, clean, and cheap energy, brought about by modern technology. This transition, which can also be seen as an energy revolution, has major implications for bringing energy services not only to urban and peri-urban areas of Africa and the ‘Middle East but also to those rural, off-grid areas currently without access to electricity. Both Africa and the Middle East are blessed with enormous solar resources, which are just beginning to be tapped, providing an opportunity to improve the lives of hundreds of millions of people. Efficient and cost-effective solar solutions and novel business models enable previously unserved people to leapfrog straight into the future of energy. This book explores some of these opportunities that will transform Africa and the Middle East in the decades ahead. It is an exciting time in the energy history of the world, and Africa and the Middle East will be important playing fields in creating that new history.

A New Book On Solar Energy In Africa and the Middle East

I have not posted on this blog web site for a while because my writing efforts were diverted to helping create a new book entitled ‘The Sun Is Rising In Africa and the Middle East: On the Road to a Solar Energy Future”. The book went to the printer earlier this week and should be available in printed form shortly. A digital version is also in the works. The book has three authors and three additional contributors, each bringing a rich perspective and set of experiences to the discussion. To whet your appetitites I include below the first few pages of the manuscript, including the Table of Contents. More information coming when the book is actually available for sale.
……………………….

THE SUN IS RISING
IN AFRICA AND THE MIDDLE EAST
On the Road to a Solar Energy Future

Peter F. Varadi | Frank Wouters | Allan R. Hoffman
Contributors
Wolfgang Palz
Anil Cabraal
Richenda Van Leeuwen

Contents

Preface​xi
Introduction​1
1.​Solar Energy in Africa and in the Middle East​3
1.1​An Overview of Energy Production and
Consumption in Africa and the Middle East​4
1.1.1​Africa​4
1.1.2​The Middle East​9
1.2​The Role of Solar Energy in Africa and in the
Middle East​13
2.​Solar Technologies for Electricity Generation​19
2.1​Solar Energy to Electricity: Solar cells​20
2.1.1​PV Modules Made of Solar Cells Created on
Si Wafers​24
2.1.2​Thin-Film PV Modules​27
2.1.3​Utilization of Various PV Production
Technologies​28
2.1.4​Solar PV Systems​28
2.2​Concentrating Thermal Solar Power Systems​31
2.3​Hybrid Solar Systems​35
3.​Electric Grid Issues in Africa and the Middle East​39
3.1​Introduction​40
3.2​Mini-grids​41
3.2.1​Devergy​42
3.2.2​Donor Support for Mini-Grids​43
3.2.3​Central vs. Individual Uses​43
3.3​Regional Power Pools in Africa​46
3.4​Gulf Cooperation Council Interconnection Authority​50
3.4.1​Middle East​50
3.4.2​GCCIA​50
3.4.3​GCCIA and Renewable Energy​52
4.​Regional and International Solar Initiatives​55
4.1​Introduction​56
4.2​Introduction to the European Development Aid:
A Personal Recollection​57
Wolfgang Palz
4.3​U.S. Energy Development Assistance to Africa and
the Middle East​63
4.3.1​Africa​63
4.3.2​Middle East​66
4.4​Lighting Africa: Evolution of World Bank Support
for Solar in Africa​68
Anil Cabraal
4.4.1​In the Beginning​68
4.4.2​Evolution​71
4.4.3​Solar PV in Africa​74
4.4.4​Lighting Africa​78
4.4.5​The Lighting Africa Program​80
4.4.6​Elements of Lighting Africa Program​81
4.4.7​Lessons Learned​84
4.4.8​The Future​86
4.4.9​Paris Climate Agreement (2015)​87
4.4.10 Climate Change Action Plan 2016-2020​88
4.4.11 IFC Scaling Solar​90
4.4.12 World Bank Off-grid Solar Projects​91
4.5​The Africa Clean Energy Corridor​93
4.5.1​The Issue at Hand​96
4.5.2​Planning​97
4.5.3​Resource Assessment​98
4.5.4​Access to Finance​99
4.5.5​Status and Way Forward​99
4.6​Global Energy Transfer Feed-in Tariff​102
4.6.1​Hydropower Projects​107
4.6.2​Cogeneration (Biomass: Bagasse from
Sugar Production)​108
4.6.3​Solar PV Projects​109
4.6.3.1​Soroti solar PV project​109
4.6.3.2​Tororo solar PV project​110
4.6.4​Wind Energy Projects​111
4.6.5​Conclusion​111
4.6.6​The Future of the GET FiT Program​112
4.6.6.1​Zambia​112
4.6.6.2​Namibia​112
4.6.6.3​Mozambique​113
4.7​Deserts as a Source of Electricity​114
5.​Existing and Emerging Solar PV Markets​119
5.1​Introduction​120
5.2​Water Pumping Utilizing Solar Electricity​121
5.2.1​Africa​126
5.2.2​Middle East​128
5.3​Solar Energy and Clean Water​131
5.3.1​Desalination​131
5.3.2​Disinfection​133
5.4​Off-Grid Telecom Towers​134
5.4.1​Off-Grid or Bad-Grid?​134
5.4.2​Tower operators​135
5.4.3​Renewable Energy Towers​136
5.4.4​Tower ESCOs​137
5.5​Internet with PV​139
5.5.1​Internet in Africa​139
5.5.2​NICE, the Gambia​140
5.6​Solar Energy and Mining​143
5.7​Tele-Medicine and Tele-Education​146
6.​Financing: The Key to Africa and the Middle East’s
Solar Energy Future​151
6.1​Introduction​152
6.2​Solar for Energy Access in Africa​153
Richenda Van Leeuwen
6.2.1​“Below,” “Beyond,” and “Off” the Grid:
Powering Energy Access​154
6.2.2​Why Solar for Energy Access in Africa?​156
6.2.3​Why Hasn’t the Grid Been Extended
across Africa?​156
6.2.4​Global Catalysts: Renewed Attention at
the UN and Beyond​157
6.2.5​Market Expansion​160
6.2.6​Future Directions​162
6.3​Financing Solar in Africa and the Middle East​164
6.3.1​Size Matters​165
6.3.2​Risk​167
6.3.3​Financing Off-Grid​167
6.4​Pay-As-You-Go and Community Solar​170
6.4.1​Where the Grid Doesn’t Reach​170
6.4.2​Solar Products​170
6.4.3​Solar Home Systems​174
6.4.4​M-Kopa​174
6.5​Large-Scale Auctions​178
6.5.1​Introduction​178
6.5.2​Sealed-Bid Auction​179
6.5.3​Descending Clock Auctions​179
6.5.4​Hybrid Auctions​179
6.5.5​South Africa​180
6.5.6​IFC’s Scaling Solar​182
6.5.7​Zambia​184
6.5.8​Epilogue​185
7.​Local Value Creation​187
7.1​Local Value Creation: Analysis​188
7.1.1​Local Content Requirements​189
7.1.2​Discussion​190
7.2​Nascent Manufacturing Sector​192
7.2.1​Fosera​193
7.2.2​Solar Manufacturing in the Middle East​196
7.2.3​Noor Solar Technologies​197
8.​Current and Future Solar Programs in Africa and in the
Middle East​199
8.1​Introduction​200
8.2​Africa​201
8.2.1​Electricity in Sub-Saharan Africa​202
8.2.2​Nigeria​204
8.2.2.1​Large grid-connected projects
in Nigeria​205
8.2.2.2​Feed-in tariffs​206
8.2.2.3​Net metering​206
8.2.2.4​Other solar applications​207
8.2.2.5​Discussion​207
8.2.3​Uganda​208
8.2.4​Namibia​210
8.2.4.1​Utilization of renewable energy
to produce electricity​212
8.2.4.2​Biomass​212
8.2.4.3​Wind​213
8.2.4.4​Concentrated Solar Power (CSP)​213
8.2.4.5​PV Systems​213
8.2.4.6​Commercial and other
organizations​216
8.2.4.7​Summary​218
8.2.5​Senegal​218
8.2.5.1​Impact of solar home systems
in Senegal​219
8.2.5.2​Solar energy in the Middle East
and North Africa​220
8.2.6​Morocco​221
8.2.7​Egypt​223
8.3​The Middle East​225
8.3.1​Jordan​225
8.3.2​United Arab Emirates​225
8.3.3​Saudi Arabia​228
8.4​Into the Future​231
Epilogue​233
Glossary​235
About the Authors​239
About the Contributors​241
Index​243

Adapting to Change – Never Easy

The attached article by Giles Parkinson (renew economy.com.au) about the energy debate in Australia is reposted here because it illustrates a universal issue – resistance to change. This is certainly a characteristic of the global energy sector as it transitions from dependence on fossil fuels (coal, oil, natural gas) to increasing use of renewable energy in its various forms. There are many vested interests in the energy sector and each will attempt to maintain its current status, but the coming change is inexorable, and forward-looking energy companies will position themselves to take advantage of these changes. Others resistant to change will eventually become footnotes to history, as has happened to so many other commercial ventures that have been overtaken by new technologies and associated events. Australia, because of high energy prices and a resistant utility sector, is going through this change a bit earlier than others, but we will all get there.

…………………………..

The great divide over Australia’s energy future
By Giles Parkinson on 22 May 2017

It was the head of the biggest electric network operator in the world, China State Grid, that summed up best the challenge of moving to a high renewable energy grid: It is not so much a technical problem, but a cultural one.

In other words, there are those who say it can be done, arguing that it offers a smart, cleaner and ultimately cheaper and more reliable alternative. And there are those who say it can’t be done, and are reluctant to adopt the new technologies and the new ways of managing a complex electricity grid.

In Australia in the past few weeks, we have been getting a clear signal as to which authorities fall into which camp, and the obstacles facing those who want to get on with the job and go with the technology, rather than fight it.

There is, inevitably, the politics, led by the federal Coalition, railing against the “reckless pursuit” of wind and solar and yet, at the same time, drumming up huge ideas for massive pumped hydro schemes, a sure sign that they see more wind and solar as inevitable.

And there is institutional resistance. The Australian Energy Market Commission, which sets market rules, last week released a document which painted a view of Australia’s energy market nearly as dystopian as Donald Trump’s inauguration speech, the one that prompted former president George W Bush to note at the time: “That was some weird shit.”

And so was the AEMC’s. Its full document is a thorough appraisal of the events of 2015/16, but the media release was another thing altogether: painting a dark picture of energy shortages, risky additions of wind and solar, lost inertia, reduced reliability and the threat of blackouts – comments that were readily picked up by the green-baiting Murdoch media.

Ivor Frischknecht, the CEO of the Australian Renewable Energy Agency, has said on several occasions in the last few weeks that it is clear that the technologies exist for transition to a renewables-based electricity grid. It is only old rules and regulations that are getting in the way and preventing it from happening.

tesla_grid_battery

It’s a view that is now widely shared. The CSIRO and Energy Networks Australia, in their ground-breaking Network transformation roadmap, speak of the critical important for rules and regulations to catch up with technology, lest the changes and cost reductions in solar, storage, and software becomes so rapid that the industry is unable to catch up.

Their two-years of research found a zero emissions grid could be put in place, based largely around renewables and with a special focus on consumer-owned solar and storage, and save consumers more than a $100 billion by 2050.

That would be at least some recompense to those consumers, who are clearly the biggest losers from the creation of the National Electricity Market two decades ago, and its failure to check the spending of the networks or the pricing power of the gentailers.

The consumers are now paying ridiculous prices from electricity still mostly delivered by now mythical “cheap coal”, and are facing even more rises in coming months.

Yet, as Accenture points out in a separate report, these consumers now have the technologies to be masters of their energy destiny, driven by concerns about sustainability, energy independence and simple economics.

When the cost of solar and storage is likely to be half the cost of grid power, as some networks recognise it will be, the economic modelling behind this grid concoction has a major, major problem, one that rivals the disruption posed by the internet and digital technology.

And because this is a heavily regulated and essential service, the challenge is not just to the incumbents but the regulators and rule makers.

Accenture warns that unless the industry changes quickly, there will be hell to pay in their boardrooms, and consequences everywhere. To do that, they need the rules to be changed, and to be changed quickly.

The Grattan Institute added to those calls on Monday, saying that urgent market reforms and rule changes are needed to ensure reliability of supply. It is hard to find anyone in the industry who disagrees with this statement.

The irony is that it is the AEMC that is charged with making and adjusting these rules, which makes its position on the risks to energy security all the more galling for many, given it has done so little to make the grid fit for purpose, either rejecting new proposals, or kicking them endlessly down the road.

The Australian Energy Market Operator has grown so frustrated with the situation that in its submission to the Finkel Review it asked to be allowed to take responsibility of many of the rule changes itself, so it can rapidly adapt the markets to the changing technologies and dynamics.

This call is likely to be intensified under its new CEO, the reforming Audrey Zibelman, and it was notable that last week AEMO and ARENA teamed up to drive a pilot on the use of demand response, an obvious and relative cheap solution to dealing with peak demand, and a lot cheaper and cleaner than building new peaking generators.

Zibelman knows it will work, because she has seen it operating effectively in markets throughout the world, including the one in the US where she used to manage New York’s radical shift in energy policy.

“There is often skepticism about change,” she told RenewEconomy last week. “This (trial) is a good way to show this technology can work. And when we have done that we can get it into the market and modify the market rules. Technology is changing. We have to look at the market design, to ensure it attracting the right sort of investment.”

It just so happens that demand response has been one of many initiatives presented to the AEMC (way back in 2012) that were rejected or delayed, with the rule maker arguing that there was sufficient demand response in the system. Clearly not, given the enforced load shedding that occurred across the country last summer.

But demand response is just another example of the number of initiatives that the incumbent fossil fuel industry has managed to have killed or shrunk: think carbon pricing, high renewable energy targets, energy efficiency, emission limits and other mechanisms.

All could have made the market more efficient and delivered savings to consumers. The latest of these is the proposed shift to 5-minute settlements, a change widely acknowledged as crucial to level the playing field for battery storage, and remove the pricing power ruthlessly exploited by the coal and gas generators.

Like many of the other proposals, it will likely crimp the bottom line of the incumbents. So they are fighting it, keen to push the argument that any impact on their profit margins could have an impact on reliability and supply.

The equivocation over whether we have the tools to manage the energy transition appears to gripped the South Australian government too, whose state is surging past 50 per cent wind and solar and may find itself with two thirds of its demand coming from these two variable sources by the end of next year.

This is perhaps not surprising given the power interruptions of the last year, and the state election that looms next March. The bitter irony is that these events had sweet F.A. to do with the nature of renewables, but of the way the grid has been managed.

The major event cited in the AEMC report was a blackout in South Australia in November 2015, caused by a network fault during repairs to the interconnector to Victoria, and made significantly worse because of how a gas generator responded to frequency and voltage changes.

As the AEMC panel noted, the Torrens B gas generator was expected to reduce output to manage the frequency changes, but did the opposite.

The problem is being blamed on the governor response mechanisms for such plants, an issue raised by numerous analysts and which may be widespread across the country. It adds to concern about the reliability of gas and coal generators that are failing in the heat and at critical junctures in the market.

It might make you wonder why the AEMC and apparently the S.A. government is appearing to put all its eggs in the basket of gas generators, as it appears to have done by insisting only something called “real inertia”, delivered by large spinning turbines, should qualify for its proposed energy security target, at the expense of battery storage.

The draft proposal has stunned the industry. As a report from the CEC highlighted last week, the delivery of inertia can take multiple forms. Citing the same incident in South Australia in November, 2015, Tom Butler wrote:

“Those who advocate for the status quo because of the inertia provided by synchronous generators should be aware that these technologies are far from perfect.

“For example, they can become unstable at low power output. And there is simply no information available on how effectively these generators can respond to fast rates of change of frequency if they started operating before 2007.”

red flag twoIt reminds you of the transition from horse and cart to the automobile. For a while, all cars were required to have a human walk in front of them, waving a red flag, until someone woke up to the folly of the idea.

The hope is that the Finkel Review – due in just over two weeks – might convince more people that we can do without the waving of red flags. The change is upon us and it’s all OK. We just need our regulators and our politicians to catch up.