New Book: ‘Water, Energy, and Environment – A Primer’

After a long hiatus from blogging while I worked on a new book, I am pleased to announce that the book ‘Water, Energy, and Environment – A Primer’ will be published by International Water Association Publishing (IWAP) on February 18th (2019). It will be available in both printed and digital form, and the digital version will be downloadable for free as an Open Access (OA) document.

To access the free digital version go to IWAP’s OA website on Twitter: https://twitter.com/IWAP_OA.

Attached below is front material from the book, its preface and table of contents. Designed to serve as a basic and easily read introduction to the linked topics of water, energy, and environment, it is just under 200 pages in length, a convenient size to throw into a folder, a briefcase, or a backpack. Its availability as an OA document means that people all over the world with access to the internet will have access to the book and its 10 chapters.

With the completion of the book I plan to return to a regular schedule of blogging.
…………………………..
Contents
Preface ………………………………….. xi
Acknowledgement ……………………….. xv
Acronyms ……………………………… xvii
Epigraph ……………………………….. xxi
Chapter 1
Water and its global context …………………. 1
1.1 Earth’s Water Resources . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Saline Water and Desalination Processes . . . . . . . . . . . 2
1.3 Energy Requirements and Costs of Desalination . . . . . 5
1.4 Demand for Freshwater . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Implications of Limited Access to Freshwater . . . . . . . . . 9
1.6 Actions to Increase Access to Freshwater . . . . . . . . . . 10
1.7 Gender Equity Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Chapter 2
Energy and its global context ……………….. 13
2.1 Energy’s Role in Society . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Energy Realities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 What is Energy? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Energy Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Important questions . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 How is energy used? . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Electrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Chapter 3
Exploring the linkage between water
and energy ……………………………….. 23
3.1 Indirect Linkages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 The Policy Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 The Conundrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Addressing the Conundrum . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 The Need for Partnership . . . . . . . . . . . . . . . . . . . . . . . . . 27
Chapter 4
Energy production and its consequences for
water and the environment …………………. 29
4.1 Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 More on Climate Change . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Environment and Religion . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 The theocentric worldview . . . . . . . . . . . . . . . . . 33
4.3.2 The anthropocentric worldview . . . . . . . . . . . . . 34
4.3.3 Other worldviews . . . . . . . . . . . . . . . . . . . . . . . . . 34
Chapter 5
Energy options ……………………………. 37
5.1 Fossil Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Nuclear Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Geothermal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 The Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5.1 Energy demand . . . . . . . . . . . . . . . . . . . . . . . . . . 40
vi Water, Energy, and Environment – A Primer
5.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5.3 Saving energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5.4 Accelerating implementation . . . . . . . . . . . . . . . 43
5.5.5 Energy Star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5.6 The lighting revolution . . . . . . . . . . . . . . . . . . . . . 45
5.5.7 Energy efficiency in buildings . . . . . . . . . . . . . . . 48
5.5.7.1 Zero energy buildings . . . . . . . . . . . . . 48
5.5.7.2 Electrochromic windows . . . . . . . . . . . 52
5.6 Energy Efficiency in Industry . . . . . . . . . . . . . . . . . . . . . . 54
5.7 Energy Efficiency in Transportation . . . . . . . . . . . . . . . . 56
Chapter 6
Fossil fuels ………………………………. 61
6.1 Coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.1 Carbon capture and sequestration . . . . . . . . . . 63
6.1.2 A conundrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Petroleum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.1 Oil spills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.2 Peak oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.1 Methane hydrates . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.2 Fracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Chapter 7
Nuclear power ……………………………. 85
7.1 Nuclear Fission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.1 Fission fundamentals . . . . . . . . . . . . . . . . . . . . . . 85
7.1.2 Introduction to nuclear issues . . . . . . . . . . . . . . . 87
7.1.3 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Nuclear Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2.1 Fusion fundamentals . . . . . . . . . . . . . . . . . . . . . . 91
7.2.2 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.3 Barriers to Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2.4 Pros and cons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2.5 Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Chapter 8
Renewable energy ………………………… 97
8.1 The Sun’s Energy Source and Radiation
Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2 Direct Solar Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.2.1 Photovoltaics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.2.2 Concentrating solar power (CSP) . . . . . . . . . . 108
8.2.2.1 Power tower . . . . . . . . . . . . . . . . . . . . 109
8.2.2.2 Linear concentrator . . . . . . . . . . . . . . 110
8.2.2.3 Dish engine . . . . . . . . . . . . . . . . . . . . . 111
8.2.2.4 CSTP history . . . . . . . . . . . . . . . . . . . 112
8.2.2.5 Advantages and disadvantages . . . 112
8.2.2.6 Thermal storage . . . . . . . . . . . . . . . . . 113
8.2.2.7 Current status . . . . . . . . . . . . . . . . . . . 114
8.2.2.8 Concentrating photovoltaics (CPV) . 115
8.3 Solar Power Satellite (SPS) System . . . . . . . . . . . . . . 116
8.4 Hydropower and Wind Energy . . . . . . . . . . . . . . . . . . . 119
8.4.1 Hydropower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.4.2 Wind energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.4.2.1 Onshore wind . . . . . . . . . . . . . . . . . . . 121
8.4.2.2 History . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.4.2.3 An onshore limitation . . . . . . . . . . . . . 124
8.4.2.4 Offshore wind . . . . . . . . . . . . . . . . . . . 125
8.5 Biomass Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.5.1 Sources of biomass . . . . . . . . . . . . . . . . . . . . . . 129
8.5.2 Wood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.5.3 Biofuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.5.4 Algae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.5.5 Biochar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.5.6 The future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.6 Geothermal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.6.1 Sources of geothermal energy . . . . . . . . . . . . . 134
8.6.2 Manifestations of geothermal energy . . . . . . . 135
8.6.3 Uses of geothermal energy . . . . . . . . . . . . . . . . 135
8.6.3.1 Geothermal power generation . . . . . 136
8.6.3.2 Ground-source heat pumps . . . . . . . 138
8.6.4 An unusual source of geothermal energy . . . . 140
Ocean Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.7.1 Wave energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.7.1.1 Wave energy conversion
devices . . . . . . . . . . . . . . . . . . . . . . . . 142
8.7.1.2 Potential and pros and cons . . . . . . . 143
8.7.2 Ocean current energy . . . . . . . . . . . . . . . . . . . . 144
8.7.3 Tidal energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.7.3.1 Barrage . . . . . . . . . . . . . . . . . . . . . . . . 146
8.7.3.2 History . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.7.3.3 Environmental impacts . . . . . . . . . . . 147
8.7.4 Ocean thermal energy conversion (OTEC) . . 147
8.7.4.1 Barriers . . . . . . . . . . . . . . . . . . . . . . . . 148
8.7.4.2 OTEC technologies . . . . . . . . . . . . . . 148
8.7.4.3 Other cold water applications . . . . . . 149
8.7.4.4 OTEC R&D . . . . . . . . . . . . . . . . . . . . . 149
Chapter 9
Energy storage …………………………… 151
9.1 Storage and Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.2 Types of Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.2.1 Traditional and advanced batteries . . . . . . . . . 153
9.2.1.1 Lead–acid . . . . . . . . . . . . . . . . . . . . . . 153
9.2.1.2 Sodium sulfur . . . . . . . . . . . . . . . . . . . 153
9.2.1.3 Nickel–cadmium . . . . . . . . . . . . . . . . . 154
9.2.1.4 Lithium-ion . . . . . . . . . . . . . . . . . . . . . 154
9.2.1.5 Supercapacitors . . . . . . . . . . . . . . . . . 155
9.2.2 Flow batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.2.3 Flywheels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.2.4 Superconducting magnetic energy
storage (SMES) . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.2.5 Compressed air energy storage (CAES) . . . . 159
9.2.6 Pumped storage . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.2.7 Thermal storage . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.4 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.5 Fundamental Change . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Chapter 10
Policy considerations …………………….. 165
10.1 Important Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
10.1.1 Is there a physical basis for understanding
global warming and climate change? . . . . . . 166
10.1.2 Is there documented evidence for global
warming and climate change? . . . . . . . . . . . . 168
10.1.3 Can global warming and climate change be
attributed to human activities, and what are
those activities? . . . . . . . . . . . . . . . . . . . . . . . . 170
10.1.4 What are the potential short- and long-term
impacts of global warming and climate
change with respect to water supply,
environment, and health? What is the
anticipated time scale for these
impacts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10.1.5 What can be done to mitigate the onset
and potential impacts of global warming
and climate change? . . . . . . . . . . . . . . . . . . . . 179
References ……………………………… 183
Index …………………………………… 189

……………………

Preface
This book springs from my strong conviction that clean water and clean energy are the critical elements of long-term global sustainable development. I also believe that we are experiencing the beginning of an energy revolution in these early years of the 21st century. Providing clean water requires energy, and providing clean energy is essential to reducing the environmental impacts of energy production and use. Thus, I see a nexus – a connection, a causal link – among water, energy, and environment. In recent years we have adopted the terminology of the water-energy nexus for the intimate relationship between water and energy, and similarly we can apply the term nexus to the close connections among water, energy, and environment. Thisuse of the term nexus can be, and has been, extended to include the related issues of food production and health. Dealing with, and writing about, a two-element nexus is difficult enough. In this book, I will limit my analysis and discussion to the three-element water -energy-environment nexus and leave the discussion of other possible nexus elements to those more qualified to comment.

This book also springs from my observation that while there are many existing books of a more-or-less technical nature on the three elements of this nexus, a book addressing each of them and their interdependencies in a college-level primer for a broad global and multidisciplinary audience would be valuable. Consideration of these and related issues, and options for addressing them, will be priorities for all levels of government. They will also be priorities for many levels of the
private sector in the decades ahead, both in developing and developed nations. A handbook-style primer that provides an easily read and informative introduction to, and overview of, these issues will contribute broadly to public education. It will assist governments and firms in carrying out their responsibilities to provide needed services and goods in a sustainable manner, and help to encourage young people to enter these fields. It will serve as an excellent mechanism for exposure of experts in other fields to the issues associated with the water-energy-environment nexus. Further, in addition to the audiences mentioned above, target audiences include economists and others in the finance communities who will analyze and provide the needed investment funds, and those in the development community responsible for planning and delivering services to underserved populations.
The book is organized as follows: the first chapter will be devoted to the concept of nexus and how the three elements, water, energy, and environment, are inextricably linked. This recognition leads to the conclusion that if society is to optimize their contributions to human and planetary welfare they must be addressed jointly. No longer must policy for each of these elements be considered in its own silo. Chapters 2 and 3 will be devoted to spelling out global contexts for water and energy issues, respectively. Chapter 4, on related environmental issues, will address the issues of water contamination, oil spills, fracking, radioactive waste storage, and global warming/
climate change. Chapter 5 will be a discussion of energy efficiency – i.e., the wise use of energy – and its role in limiting energy demand and its associated benefits. Chapter 6 will focus on the basics of fossil fuels – coal, oil, natural gas – which today dominate global energy demand. Chapter 7 will discuss nuclear-fission-powered electricity production, which today accounts for 10% of global electricity. It will also discuss the prospects for controlled nuclear fusion. Chapter 8 will discuss the broad range of renewable energy technologies – wind, solar,hydropower, biomass, geothermal, ocean energy – which are the basis of the now rapidly emerging energy revolution. Chapter 9 will discuss the closely related issue of energy storage. Finally, Chapter 10 will address
policy issues associated with water, energy, and environment, discuss policy history and options, and provide recommendations.

‘The Sun Is Rising in Africa and the Middle East: On the Path to a Solar Energy’ Future’ Is now available

ON March 26, 2018 Pan Stanford Publishing released the 9th book in its renewable energy series: ‘The Sun Is Rising in Africa and the Middle East: On the Path to a Solar Energy Future’. It was authored by Peter Varadi, Frank Wouters, and me, and includes important chapters by contributors Anil Cabraal, Richenda Van Leeuwen, and Wolfgang Palz. It is available in a paperback, Kindle, and digital format and can be found on several bookseller websites.

Summary (from back cover of book)
Both Africa and the Middle East are blessed with enormous solar energy resources. Electrification is an urgent need in Africa, where many of its 54 countries are among the world’s fastest-growing economies, but where half the population still has no access to electricity. Solar energy is seen as the fastest and cheapest path to addressing this need. Oil-rich countries in the Middle East are turning to solar energy to meet the growing domestic demand for electricity, freeing up hydrocarbons for export. This book describes the energy transition in Africa and the Middle East, from dependence on fossil fuels to increasing reliance on solar energy. The authors were assisted by the contributions of top experts Wolfgang Palz, Anil Cabraal, and Richenda Van Leeuwen in their efforts to provide a sound basis for understanding where solar energy is heading in these two important global regions.

I also include here the book’s more expansive Epilogue:

Epilogue

An energy transition that took its first tentative steps in the latter part of the 20th century is now unfolding rapidly in the 21st century. It will have a major impact on Africa and the Middle East along with every other part of the world. It is a transition from dependence on carbon-based fuels such as coal, oil, and natural gas to the utilization of renewable energy technologies such as solar, wind, biomass, geothermal, hydropower, and ocean technologies. All, but geothermal, which is derived from the radioactive decay heat in the core of the earth, and tidal energy caused by the moon, are direct or indirect forms of solar energy. Just as we have experienced a fossil fuel era for the past few hundred years—today the world is still more than 80% dependent on such fuels—we are now embarking on a solar energy era that taps into the enormous amounts of energy received by the earth from its sun 150 million kilometers away. To put this in context, while the earth intercepts approximately 6 million exajoules of solar radiation each year (1 exajoule = 1018 joules), and the total global energy consumption is about 600 exajoules, the fraction of the sun’s radiated energy intercepted by the earth’s disk is only 4 parts in 10 billion. The issue before us is how to utilize this diffuse energy source cost-effectively and meet, in an environmentally friendly way, the needs of an expanding global population

We are transitioning from relying on ever-scarcer sources of fossil energy to an era of unlimited, clean, and cheap energy, brought about by modern technology. This transition, which can also be seen as an energy revolution, has major implications for bringing energy services not only to urban and peri-urban areas of Africa and the ‘Middle East but also to those rural, off-grid areas currently without access to electricity. Both Africa and the Middle East are blessed with enormous solar resources, which are just beginning to be tapped, providing an opportunity to improve the lives of hundreds of millions of people. Efficient and cost-effective solar solutions and novel business models enable previously unserved people to leapfrog straight into the future of energy. This book explores some of these opportunities that will transform Africa and the Middle East in the decades ahead. It is an exciting time in the energy history of the world, and Africa and the Middle East will be important playing fields in creating that new history.

A New Book On Solar Energy In Africa and the Middle East

I have not posted on this blog web site for a while because my writing efforts were diverted to helping create a new book entitled ‘The Sun Is Rising In Africa and the Middle East: On the Road to a Solar Energy Future”. The book went to the printer earlier this week and should be available in printed form shortly. A digital version is also in the works. The book has three authors and three additional contributors, each bringing a rich perspective and set of experiences to the discussion. To whet your appetitites I include below the first few pages of the manuscript, including the Table of Contents. More information coming when the book is actually available for sale.
……………………….

THE SUN IS RISING
IN AFRICA AND THE MIDDLE EAST
On the Road to a Solar Energy Future

Peter F. Varadi | Frank Wouters | Allan R. Hoffman
Contributors
Wolfgang Palz
Anil Cabraal
Richenda Van Leeuwen

Contents

Preface​xi
Introduction​1
1.​Solar Energy in Africa and in the Middle East​3
1.1​An Overview of Energy Production and
Consumption in Africa and the Middle East​4
1.1.1​Africa​4
1.1.2​The Middle East​9
1.2​The Role of Solar Energy in Africa and in the
Middle East​13
2.​Solar Technologies for Electricity Generation​19
2.1​Solar Energy to Electricity: Solar cells​20
2.1.1​PV Modules Made of Solar Cells Created on
Si Wafers​24
2.1.2​Thin-Film PV Modules​27
2.1.3​Utilization of Various PV Production
Technologies​28
2.1.4​Solar PV Systems​28
2.2​Concentrating Thermal Solar Power Systems​31
2.3​Hybrid Solar Systems​35
3.​Electric Grid Issues in Africa and the Middle East​39
3.1​Introduction​40
3.2​Mini-grids​41
3.2.1​Devergy​42
3.2.2​Donor Support for Mini-Grids​43
3.2.3​Central vs. Individual Uses​43
3.3​Regional Power Pools in Africa​46
3.4​Gulf Cooperation Council Interconnection Authority​50
3.4.1​Middle East​50
3.4.2​GCCIA​50
3.4.3​GCCIA and Renewable Energy​52
4.​Regional and International Solar Initiatives​55
4.1​Introduction​56
4.2​Introduction to the European Development Aid:
A Personal Recollection​57
Wolfgang Palz
4.3​U.S. Energy Development Assistance to Africa and
the Middle East​63
4.3.1​Africa​63
4.3.2​Middle East​66
4.4​Lighting Africa: Evolution of World Bank Support
for Solar in Africa​68
Anil Cabraal
4.4.1​In the Beginning​68
4.4.2​Evolution​71
4.4.3​Solar PV in Africa​74
4.4.4​Lighting Africa​78
4.4.5​The Lighting Africa Program​80
4.4.6​Elements of Lighting Africa Program​81
4.4.7​Lessons Learned​84
4.4.8​The Future​86
4.4.9​Paris Climate Agreement (2015)​87
4.4.10 Climate Change Action Plan 2016-2020​88
4.4.11 IFC Scaling Solar​90
4.4.12 World Bank Off-grid Solar Projects​91
4.5​The Africa Clean Energy Corridor​93
4.5.1​The Issue at Hand​96
4.5.2​Planning​97
4.5.3​Resource Assessment​98
4.5.4​Access to Finance​99
4.5.5​Status and Way Forward​99
4.6​Global Energy Transfer Feed-in Tariff​102
4.6.1​Hydropower Projects​107
4.6.2​Cogeneration (Biomass: Bagasse from
Sugar Production)​108
4.6.3​Solar PV Projects​109
4.6.3.1​Soroti solar PV project​109
4.6.3.2​Tororo solar PV project​110
4.6.4​Wind Energy Projects​111
4.6.5​Conclusion​111
4.6.6​The Future of the GET FiT Program​112
4.6.6.1​Zambia​112
4.6.6.2​Namibia​112
4.6.6.3​Mozambique​113
4.7​Deserts as a Source of Electricity​114
5.​Existing and Emerging Solar PV Markets​119
5.1​Introduction​120
5.2​Water Pumping Utilizing Solar Electricity​121
5.2.1​Africa​126
5.2.2​Middle East​128
5.3​Solar Energy and Clean Water​131
5.3.1​Desalination​131
5.3.2​Disinfection​133
5.4​Off-Grid Telecom Towers​134
5.4.1​Off-Grid or Bad-Grid?​134
5.4.2​Tower operators​135
5.4.3​Renewable Energy Towers​136
5.4.4​Tower ESCOs​137
5.5​Internet with PV​139
5.5.1​Internet in Africa​139
5.5.2​NICE, the Gambia​140
5.6​Solar Energy and Mining​143
5.7​Tele-Medicine and Tele-Education​146
6.​Financing: The Key to Africa and the Middle East’s
Solar Energy Future​151
6.1​Introduction​152
6.2​Solar for Energy Access in Africa​153
Richenda Van Leeuwen
6.2.1​“Below,” “Beyond,” and “Off” the Grid:
Powering Energy Access​154
6.2.2​Why Solar for Energy Access in Africa?​156
6.2.3​Why Hasn’t the Grid Been Extended
across Africa?​156
6.2.4​Global Catalysts: Renewed Attention at
the UN and Beyond​157
6.2.5​Market Expansion​160
6.2.6​Future Directions​162
6.3​Financing Solar in Africa and the Middle East​164
6.3.1​Size Matters​165
6.3.2​Risk​167
6.3.3​Financing Off-Grid​167
6.4​Pay-As-You-Go and Community Solar​170
6.4.1​Where the Grid Doesn’t Reach​170
6.4.2​Solar Products​170
6.4.3​Solar Home Systems​174
6.4.4​M-Kopa​174
6.5​Large-Scale Auctions​178
6.5.1​Introduction​178
6.5.2​Sealed-Bid Auction​179
6.5.3​Descending Clock Auctions​179
6.5.4​Hybrid Auctions​179
6.5.5​South Africa​180
6.5.6​IFC’s Scaling Solar​182
6.5.7​Zambia​184
6.5.8​Epilogue​185
7.​Local Value Creation​187
7.1​Local Value Creation: Analysis​188
7.1.1​Local Content Requirements​189
7.1.2​Discussion​190
7.2​Nascent Manufacturing Sector​192
7.2.1​Fosera​193
7.2.2​Solar Manufacturing in the Middle East​196
7.2.3​Noor Solar Technologies​197
8.​Current and Future Solar Programs in Africa and in the
Middle East​199
8.1​Introduction​200
8.2​Africa​201
8.2.1​Electricity in Sub-Saharan Africa​202
8.2.2​Nigeria​204
8.2.2.1​Large grid-connected projects
in Nigeria​205
8.2.2.2​Feed-in tariffs​206
8.2.2.3​Net metering​206
8.2.2.4​Other solar applications​207
8.2.2.5​Discussion​207
8.2.3​Uganda​208
8.2.4​Namibia​210
8.2.4.1​Utilization of renewable energy
to produce electricity​212
8.2.4.2​Biomass​212
8.2.4.3​Wind​213
8.2.4.4​Concentrated Solar Power (CSP)​213
8.2.4.5​PV Systems​213
8.2.4.6​Commercial and other
organizations​216
8.2.4.7​Summary​218
8.2.5​Senegal​218
8.2.5.1​Impact of solar home systems
in Senegal​219
8.2.5.2​Solar energy in the Middle East
and North Africa​220
8.2.6​Morocco​221
8.2.7​Egypt​223
8.3​The Middle East​225
8.3.1​Jordan​225
8.3.2​United Arab Emirates​225
8.3.3​Saudi Arabia​228
8.4​Into the Future​231
Epilogue​233
Glossary​235
About the Authors​239
About the Contributors​241
Index​243

An Update on U.S. Renewables

The following article appeared in the July 2017 issue of North American Windpower. It states that “The share of domestic electrical production by renewable energy has now greatly eclipsed earlier projections by the U.S. energy Information Administration (EIA)..”. This resonated with me because, back in the 1990s when I was in charge of the U.S. renewable electricity programs, I had many difficult discussions with the EIA about their continued underestimation of the anticipated deployment of solar and wind technologies.

………………………………….

U.S. Renewables Decades Ahead Of Schedule

The share of domestic electrical production by renewable energy has now greatly eclipsed earlier projections by the U.S. Energy Information Administration (EIA), the SUN DAY campaign has revealed.

According to the nonprofit organization, in the EIA’s 2012 Annual Energy Outlook, the agency forecast that renewable energy generation would increase by 77% from 2010 to 2025 (from 10% to 15%). In addition, the share of total electricity generation from non-hydro renewables would grow from roughly 4% in 2010 to 9% in 2035.

If one assumes growth were to continue at about the same annual pace as during the 25-year EIA forecast period (2010-2035), renewables would not be expected to reach 19.35% until roughly the year 2057 – 40 years from now, the organization says.

The EIA’s 2012 report further forecast that wind capacity would increase from 39 GW in 2010 to 70 GW in 2035 and that solar would reach 24 GW of capacity in 2035.

In reality, says SUN DAY, citing the Federal Energy Regulatory Commission’s (FERC) latest Energy Infrastructure Update, which includes data for the first three months of 2017, wind generating capacity already totals 84.59 GW, while utility-scale solar capacity has reached 25.84 GW (not including distributed small-scale systems, such as rooftop solar).

Moreover, the latest issue of the EIA’s Electric Power Monthly (with data through March 31) reveals that renewable energy sources (biomass, geothermal, hydropower, solar [including small-scale PV] and wind) accounted for 19.35% of net U.S. electrical generation during the first quarter of 2017. Of this, conventional hydropower accounted for 8.67%, followed by wind (7.10%), biomass (1.64%), solar (1.47%) and geothermal (0.47%). Combined, non-hydro renewables accounted for 10.68% of total generation.

“Not only has renewable energy’s share of total domestic electrical generation nearly doubled in the past seven years – it has reached a level of output that EIA, just five years ago, did not anticipate happening for another four decades,” states Ken Bossong, executive director of the SUN DAY Campaign. “While one might conclude that EIA’s methodology is seriously flawed, it is also safe to say that renewables – especially solar and wind – by now providing almost one-fifth of the nation’s electrical production, are vastly exceeding expectations and breaking records at an astonishing pace.”

According to the group, this is clearly evidenced by comparing 2017 with 2016. During the first quarter of 2016, renewables provided 17.23% of total generation versus 19.35% in 2017, meaning actual generation by renewables is 9.70% greater than it was just a year ago.

In particular, solar (solar thermal, utility-scale PV and distributed PV) has ballooned by 34.1%, wind has expanded by 11.4%, conventional hydropower has grown by 7.7%, and geothermal has increased by 3.2%. Only utility-scale biomass has declined year on year (by 1.6%).”

…………………….

The above report is based on data from the EIA as well as data for the first quarter of 2017 in the latest Energy Infrastructure Update by FERC, the Federal Energy Regulatory Commission. The EIA also reports, in a press release dated July 6, 2017, that “In March, and again in April’ U.S. monthly electricity generation from utility-scale renewable sources exceeded nuclear generation for the first time since July 1984. This outcome reflects both seasonal and trend growth in renewable generation, as well as maintenance and refueling schedules for nuclear plants, which tend to undergo maintenance during spring and fall months, when overall electricity demand is lower than in summer or winter.”

It is important to note the clear trend toward increasing amounts of renewable generation – “More than 60% of all utility-scale electricity generating capacity that came online in 2016 was from wind and solar technologies” -and the fact that solar generation on individual home and business roofs is not included in this analysis. All indicative of the clear conclusion that the U.S. Is on a path toward an energy future increasingly dependent on renewable energy, as is true in many other parts of the world.

Renewable Energy and Jobs

The attached article was first published on the website energypost.eu edited by Karel Beckman. The article was stimulated by my strong belief that the job-creation aspects of renewable energy manufacture and deployment are receiving too little attention.

………………………………

Jobs? Investing in renewables beats fossil fuels
May 19, 2017 by Allan Hoffman

For policymakers who are interested in job creation, investing in renewable energy is considerably more effective than investing in fossil fuels, writes Allan Hoffman, author of the blog Thoughts of a Lapsed Physicist and formerly with the U.S. Department of Energy. Solar and wind are powerful engines of job creation and economic growth.

Job creation is always a safe issue for politicians to address and it played a crucial role in our recent presidential election. Donald Trump achieved his unexpected upset victory over Hillary Clinton by appealing to disaffected workers in normally Democrat-leaning states such as Pennsylvania and Wisconsin. A primary focus of the Trump campaign was jobs in the manufacturing and coal-mining industries, where many workers had been laid off in recent years. Some people have blamed these job losses on Obama Administration policies, including support for solar and wind energy. What are the facts?

The fact that renewable energy, mostly in the form of solar and wind energy, is entering the energy mainstream, both in the U.S. and in other countries, is a reality. This is often attributed to their reduced costs and role in reducing carbon emissions. What is often overlooked or given minimal attention is that investment in the manufacture and deployment of these clean energy technologies creates many ‘green jobs’. What data supports this statement?

Already the largest source of renewable energy jobs in the U.S., solar energy will be a major factor in shaping our future energy system and creating new jobs

Data for the U.S. was available from the Green Jobs Initiative of the Bureau of Labor Statistics in annual reports for fiscal years 2009, 2010, and 2011. Unfortunately, budget sequestration brought an end to this program in 2013. Today other organizations are filling the gap, e.g. The Solar Foundation’s annual ‘National Solar Jobs Census’, monthly reports from the U.S. Energy Information Administration (EIA), and occasional reports from other non-governmental organizations.

Largest employer

On a global basis the International Energy Agency (IEA) has become a source of jobs information, as has the International Renewable Energy Agency (IRENA) through its Renewable Energy and Jobs Annual Reviews. Two highlights of IRENA’s 2016 Review were that (a) global direct and indirect employment in the renewable energy industry had reached 8.1 million in 2015, a 5% increase over 2014, and (b) solar photovoltaics (PV) was the largest renewable energy employer at 2.8 million jobs, an 11% increase over 2014.

Solar Foundation data indicated that in 2016 the U.S. solar industry (8,600 companies) employed 260,00 workers. This was an increase of more than 20% for the fourth straight year and more than 178% since 2010. This outpaced the overall 2016 national jobs growth rate of 1.5%. California led U.S. states in solar employment with 100,050 jobs.

How do these numbers compare with numbers in the fossil fuel industries? In 2015 workers employed directly in oil and natural gas extraction numbered about 187,000, a decrease of 14,000 from 2014. Indirect related jobs number about 2 million, of which about 40% are at gas stations. Another fossil fuel industry that received considerable attention during the 2016 election was coal mining. It accounted for 68,000 jobs in 2015, continuing its decrease of recent years.

A different story

Looking ahead, what can we expect? As oil and natural gas prices increase from their recent lows, and fracking is therefore reinvigorated, the number of related extraction jobs should stay approximately level. This should continue as long as no cost penalty is imposed on carbon emissions, and Trump Administration support for maintaining and expanding fossil fuel extraction is strong.

Coal is a different story. Long the basis of more than half of U.S. electricity generation, coal’s share of that market is now down to about a third and heading lower. When combusted it is the dirtiest of the fossil fuels, and automation of the coal digging process and competition from fracked and low cost natural gas has signaled the beginning of the end of the coal era and related jobs in the U.S. In addition, utilities are not adding new coal powered systems because their capital and operating costs are higher than for new natural gas, wind and solar power plants (data provided by EIA).

Solar and wind are no longer niche businesses

What are the prospects for renewable energy and related jobs in the U.S. in the future? As reported by the American Wind Energy Association (AWEA), at the start of 2016 jobs in the U.S. wind industry totaled 88,000, an increase of 20% over 2014. This was made possible by the installation of nearly 9,000 megawatts of new electrical generating capacity across 20 states, an increase of 77% over 2014. Wind accounted for 41% of all newly installed U.S. electrical capacity in 2015, ahead of solar (28.5%) and natural gas (28.1%). This growth will continue both onshore, where essentially all U.S. wind turbines have been installed to date, and offshore as this large resource begins to be tapped.

Impressive prospects

Two recent reports have documented the equally impressive prospects for solar energy’s growth. IRENA’s ‘Letting In the Light: How Solar Photovoltaics Will Revolutionize the Electricity System’ states that “The age of solar energy has arrived. It came faster than anyone predicted and is ushering in a shift in energy ownership.”

Bloomberg New Energy Finance reported in a June 2016 report that “..solar and wind technologies will be the cheapest way to produce electricity in most parts of the world in the 2030s..” Already the largest source of renewable energy jobs in the U.S., solar energy will be a major factor in shaping our future energy system and creating new jobs. A recently published book Sun Towards High Noon: Solar Power Transforming Our Energy Future (Pan Stanford Publishing; Peter Varadi editor and contributor) discusses the jobs issue in detail along with other issues, including solar financing, markets, and quality control.

We must not be left behind as this energy transition unfolds in the next several decades

What conclusions can be drawn? If a primary national goal is to create jobs in the energy sector, investing in renewable energy is considerably more effective than investing in fossil fuels. Solar and wind are no longer niche businesses, their widespread use addresses global warming and climate change, and their manufacture and deployment are powerful engines of economic growth and job creation.

The U.S. Congress must recognize this and put policies in place that accelerate their growth. Other countries recognize this potential and are moving rapidly onto this path, some even faster than the U.S. We must not be left behind as this energy transition unfolds in the next several decades, but we must also not forget the people who will be displaced from their jobs in traditional energy industries.

Editor’s Note

Allan Hoffman is author of the blog Thoughts of a Lapsed Physicist. He is a former Senior Analyst in the Office of Energy Efficiency and Renewable Energy at the U.S. Department of Energy (DOE) and physicist by training.

Hoffman is a contributor to a new comprehensive handbook, Sun Towards High Noon, edited by solar pioneer Peter F. Varadi, which details the meteoric expansion of the solar (PV) industry and describes how solar power will change our energy future.