The Exciting Changes Taking Place in Scotland’s Energy System

I returned recently from a two-week visit to Scotland, my wife’s home country. She and I are now the owners of a flat (apartment in Americanese) in East Kilbride, near Glasgow, that makes visiting with her family much easier.  Another exciting feature is that on all clear days (it happens occasionally in Scotland) we can see, from the flat’s bedroom windows, wind turbines spinning in the nearby Whitelee wind farm, currently the largest operating onshore wind farm in Europe (just under 600MWp). The wind farm is several miles away from the flat.

image

The purpose of this blog post is to discuss the exciting developments taking place in Scotland’s energy system, where the stated national goal is to go 100% renewables for electricity supply by 2020. Achieving this goal, whether in 2020 or sometime in the decade afterwards, will rely heavily on Scotland’s large wind resources, both onshore and offshore. As a sparsely populated country (total population is 5.4 million ) with significant renewable energy resources, Scotland “..is in a unique position to demonstrate how the transition to a low-carbon, widely distributed energy economy may be undertaken.”

What is Scotland’s current energy situation?  In Late November 2014 it was announced by the independent trade body Scottish Renewables that “.. with numbers from the first half of 2014, ..renewable energy was Scotland’s largest source of (electrical) power.” Specifically, for the first half of 2014, renewables provided 10.3 TWh of electrical energy, while nuclear power, previously Scotland’s main sources of electricity, provided 7.8 TWh. Coal was third with 5.6 TWh with natural gas at 1.4 TWh.

This increase in renewable generation continues the trend shown in the following chart:

image

Installed renewable capacity increased to 7,112 MW by the end of the 3d quarter of 2014 – mostly onshore wind and hydro – with another 441 MW of wind capacity (onshore) in construction, 7,720 MW (onshore and offshore) awaiting construction, and 3,765 MW (onshore) in planning. Small amounts of other renewable generation (biomass, landfill gas, hydro) are also in the pipeline.

image

With wind power already generating enough electricity to supply more than total Scottish household demand, Niall Stuart, Chief Executive of Scottish Renewables, sees much more potential in the future: “Offshore wind and marine energy (wave, tidal, ocean current) are still in the early stages of development but could make a big contribution to our future energy needs if they get the right support from government. That support includes the delivery of grid connections to the islands, home to the UK’s very best wind, wave and tidal sites.”

Scottish enthusiasm for renewables was bolstered by a report issued  by WWF Scotland in January (‘Pathways to Power: Scotland’s route to clean, renewable, secure electricity by 2030’) which concluded that, with respect to electricity, a fossil fuel-free Scotland is not only technically feasible but “..could prove a less costly and safer option than pursuing fossil fuel- based development..” that assumes carbon capture and sequestration (CCS) technology will be operating at scale in 2030. With regard to the Scottish government’s stated goal of decarbonizing the electrical sector by 2030, Paul Gardner of DNV GL, lead author of the report, has stated that “There is no technical reason requiring conventional fossil and nuclear generation in Scotland.”  In addition, Gina Hanrahan, climate and energy officer at WWF Scotland, explained that “The report shows that not only is a renewable, fossil fuel-free electricity system perfectly feasible in Scotland by 2030, it’s actually the safe bet. Pursuing this pathway would allow Scotland to maintain and build on its position as the UK and Europe’s renewable powerhouse, cut climate emissions (electricity generation accounts for one-third of Scotland’s emissions) and continue to reap the jobs and investment opportunities offered by Scotland’s abundant renewable resources.”

What is Scotland’s natural resource base for renewables?  In addition to its existing installed capacity of hydropower (1.3 GW), it is estimated that wind, wave and tide make up more than 80% of Scotland’s  renewable energy potential – 36.5GW/wind (onshore and offshore), 7.5 GW/tidal power, 14 GW/wave power. This total, almost 60 GW, is considerable greater than Scotland’s existing electrical generating capacity from all fuel sources of 10.3 GW.

It is interesting to note that Scotland also has significant fossil fuel resources, including 62.4% of the European Union’s proven oil reserves, 12.5% of the EU’s proven natural gas reserves, and 69% of UK coal reserves.  Nonetheless, the Scottish Government, as discussed above, has set ambitious goals for renewable energy production. This is likely driven by concern for global climate change and the economic potential for Scotland as a major source of renewable energy.

 

 

Documenting the 1970s – Part 1 of 2

A theme that has emerged in some of my recent blog posts is that many useful thoughts on renewable energy policy were formulated in the late 1970s, but that the U.S. was slow to pick up on the opportunities (e.g., see ‘A Personal View’). In the course of reviewing materials long-stored in my basement files I have found quite a few documents that were published at that time that support this theme, and I will use this blog to make sure that some of them are easily available.

The first of two documents I will post is the June 20, 1979 message sent by President Carter to the U.S. Congress that outlined “..the major elements of a national solar strategy.” It was based on the DPR (Domestic Policy Review of Solar Energy) that had been delivered to the President six months earlier. It shows that President Carter understood the importance of committing “..to a society based largely on renewable sources of energy” way back when. He deserves great credit for this foresight, which unfortunately was not shared by his successor in the White House.

image

The attached document is quite long, for which I apologize, but well worth reading. It demonstrates that U.S. thinking about energy was quite advanced more than three decades ago, and that it is only in recent years, under President Obama, that we have started to seriously implement those long-ago ideas and proposed policies. It is a shame and national disgrace that it has taken so long to do this, and dispiriting to comprehend what could have been accomplished but wasn’t. However, as we say, better late than never.

Further early discussion of these ideas will be presented in the follow-up post ‘Documenting the 1970s – Part 2 of 2′.

……………………………………,,,,,

FOR IMMEDIATE RELEASE

June 20, 1979

Office of the White House Press Secretary
THE WHITE HOUSE
TO THE CONGRESS OF THE UNITED STATES:
On Sun Day, May 3, 1978 we began a national mobilization in our country toward the time when our major source~ of
energy will be derived from the sun. On that day, I committed our Nation and our government to developing an aggressive
policy to harness solar and renewable sources of energy. I ordered a major government-wide review to determine how
best to marshal the tools of the government to hasten the day when solar and renewable sources of energy become our
primary energy resources. As a result of that study, we are now able to set an ambitious goal for the use of solar energy
and to make a long term commitment to a society based largely on renewable sources of energy. In this Message I will outline
the major elements of a national solar strategy. It relies not only on the Federal government, both Executive and Congress,
but also on State and local governments, and on private industry, entrepreneurs, and inventors who have already given us significant progress in the availability of solar technologies. Ultimately, this strategy depends on the strength of the American people’s commitment to finding and using substitutes for our diminishing supplies of traditional fossil fuels.

Events of the last year — the more than 30% increase in the price of oil we import and the supply shortage caused
by the interruption of oil production in Iran — have made the task of developing a national solar strategy all the more
urgent, and all the more imperative. More than ever before, we can see clearly the dangers of continued excessive reliance on oil for our long-term future security. Our energy problem demands that we act forcefully to diversify our energy supplies, to make maximum use of the resources we have, and to develop alternatives to conventional fuels. Past governmental policies to control the prices of oil and natural gas at levels below their real market value have impeded development and use of solar and renewable resource alternatives. Both price controls and direct subsidies that the government has provided to various existing energy technologies have made it much more difficult for solar and renewable resource technologies to compete. In April of this year I announced my decision to begin the process of decontrolling domestic oil prices. Last November, I signed into law the Natural Gas Policy Act which
will bring the price of that premium fuel to its true market level over the next five years. Together, these steps will
provide much-needed incentives to encourage maximum exploration and production of our domestic resources. They provide
strong incentives to curb waste of our precious energy resources. Equally important, these steps will help solar and renewable resource technologies compete as the prices of oil and natural gas begin to reflect their real market value.
Consumers will see more clearly the benerits of investing in energy systems for which fuel costs will not escalate each year. Industry can plan and invest with more certainty, knowing the market terms under which their products will compete.

We must further strengthen America’s commitment to conservation. We must learn to use energy more effiCiently and productively in our homes, our transportation systems and our industries. Sound conservation practices go hand in hand with a strong solar and renewable resource policy. For example, a well-designed and well-insulated home is better able to make use of solar power effectively than one which is energy inefficient. We must also find better ways to burn and use coal — a fossil fuel which we have in abundance. Coal must and will be a key part of a successful transition away from oil. We must and will do more to utilize that resource. Solar energy and an increased use of coal will help in the near and mid-term to accelerate our transition away from crude oil.

But it is clear that in the years ahead we must increasingly rely on those sources of power which are renewable. The
transition to widespread use of solar energy has already begun. Our task is to speed it along. True energy security —
in both price and supply — can come only from the development of solar and renewable technologies. In addition to fundamental
security, solar and renewable sources of energy provide numerous social and environmental benefits. Energy from the sun is clean and safe. It will not pollute the air we breathe or the water we drink. It does not run the risk of an accident which may threaten the health or life of our citizens. There are no toxic wastes to cause disposal problems. Increased use of solar and renewable sources of energy is an important hedge against inflation in the long run. Unlike the costs of depletable resources, which rise exponentially as reserves are consumed, the cost of power from the sun will go down as we develop better and cheaper ways of applying it to everyday
needs. For everyone in our society — especially our low-income or fixed-income families — solar energy provides an important way to avoid rising fuel costs. No foreign cartel can set the price of sun power; no one can embargo it. Every solar collector in this country, every investment in using wind or biomass energy, every advance in making electricity directly from the sun decreases our reliance on uncertain sources of imported oil, bolsters our international trade position, and enhances the security of our Nation.

Solar energy can put hundreds of thousands of Americans to work. Because solar applications tend to be dispersed and decentralized, jobs created will be spread fairly evenly around the Nation. Job potentials span the ranges of our employment spectrum, from relatively unskilled labor to advanced engineers, from plumbers and metal workers to architects and contractors, from scientists and inventors to factory workers, from the small businessman to the large industrialist. Every investment in solar and renewable energy systems keeps American dollars working for us here at home, creating new jobs and opportunities, rather than sending precious funds to a foreign cartel.

Increased reliance on solar and renewable technologies can also increase the amount of control each one of us as individuals and each of our local communities has over our energy supplies. Instead of relying on large, centralized energy installations, many solar and renewable technologies are smaller and manageable by the homeowner, the farmer, or the individual factory or plant. By their very nature, renewable technologies are less likely to engage the kind of tension and conflict we have seen in other energy areas, such as the problems
posed by siting a very large energy facility, or trading off between surface uses of land and development of the energy minerals that might lie below that land.

Finally, solar and renewable technologies provide great international opportunities, both in foreign trade, and in the ability to work with developing nations to permit them to harness their own, indigenous resources rather than become dependent on fuels imported from other nations.
It is a mistake to think of solar energy as exotic or unconventional. Much of the technology for applying the sun’s power to everyday tasks has been in use for hundreds of years. There were windmills on our great plains long before there were high tension wires. There were factories in New England using waterpower long before the internal combustion engine was invented. In Florida, before World War II, there were more than 60,000 homes and buildings using solar hot water heaters. The Native Americans who built the great cliff dwellings of the West understood and applied solar heating principles that we have neglected in recent years, but which are available for us to use today.

These traditional and benign sources of energy fell into disuse because of a brief glut of cheap crude oil. These years are over. That inescapable fact is not a cause for despondency or a threat to our standard of living. On the contrary, it presents us with an opportunity to improve the quality of our lives, add dynamism to our economy and clean up our environment. We can meet this challenge by applying the time-tested technologies of solar power, and by developing and deploying new devices to harness the rays of the sun.

The government-wide survey I commissioned concluded that many solar technologies are available and economical today. These are here and now technologies ready for use in our homes, schools, factories, and farms. Solar hot water heating is competitive economically today against electric power in virtually every region of the country. Application of passive design principles that take into account energy efficiency
and make maximum use of the direct power of the sun in the intrinsic design of the structure is both good economics and good common sense.

Burning of wood, some uses of biomass for electricity generation, and low head hydropower have repeatedly been shown to be cost competitive.

Numerous other solar and renewable resources applications are close to economic competitiveness, among them solar space heating, solar industrial process heat, wind-generated electricity, many biomass conversion systems, and some photovoltaic applications. We have a great potential and a great opportunity to expand dramatically the contribution of solar energy between now and the end of this century. I am today establishing for our country an ambitious and very important goal for solar and renewable sources of energy. It is a challenge to our country and to our ingenuity. We should commit ourselves to a national goal of meeting one fifth – 20% – of our energy needs with solar and renewable resources by the end of this century. This goal sets a high standard against which we can collectively measure our progress
in reducing our dependence on oil imports and securing our country’s energy future. It will require that all of us examine carefully the potential solar and renewable technologies hold for our country and invest in these systems wherever we can.

In setting this goal, we must all recognize that the Federal government cannot achieve it alone. Nor is the Federal budget the only tool that should be considered in determining the courses we set to reach this goal. The extent to which solar and renewable technologies become more competitive will depend upon the cost of existing sources of energy, especially oil and natural gas. The degree to which existing solar technologies achieve widespread use in the near term will be as much if not more a function of the commitment on the part of energy users in this country to consider these technologies as it will be a function of the incentives the government is able to provide.

State and local governments must make an all-out effort to promote the use of solar and renewable resources if the
barriers now found at those levels are to be overcome. Zoning ordinances, laws governing access to the sun, housing codes,
and state public utility commission policies are not Federal responsibilities. Although the Federal government should
provide leadership, whether or not these tools are used to hinder or to help solar and renewable energy use Ultimately
depends upon decisions by each city, county and state. The potential for success in each of these areas is great; the
responsibility is likewise. I call on our Governors, our Mayors, and our county officials to join with me in helping
to make our goal a reality.

American industry must also be willing to make investments of its own if we are to reach our solar goal. We are setting
a goal for which industry can plan. We are providing strong and certain incentives that it can count on. Industry, in
turn, must accelerate and expand its research, development, demonstration, and promotional activities. The manufacturing,
construction, financing, marketing, and service skills of American business and labor are essential. Banks and financial
institutions will need to examine and strengthen their lending policies to assure that solar technologies are offered a fair
chance in the marketplace. Universities and the academic community must mobilize to find ways of bringing those solar
and renewable technologies that are still not ready for commercial introduction closer to the marketplace. Small
businesses and family farmers also have opportunities for significant use of solar and renewable resources. They, too,
must join in this effort.

Finally, each one of us in our daily lives needs to examine our own uses of energy and to learn how we can make solar
and renewable resources meet our own needs. What kind of house we buy, or whether we are willing to work in our own communities to accelerate the use of solar energy, will be essential in determining whether we reach our goal.

The Federal government also has a responsibility in providing incentives, information, and the impetus for meeting our 20%
solar goal by the year 2000. Almost every agency of the Federal government has responsibilities which touch in one way or another on solar energy. Government agencies helped finance over one million U.S. homes in 1978. By their lending policies and their willingness to assist solar investments, these agencies have significant leverage. The Tennessee Valley Authority is the Nation’s largest utility and producer of power. It has a far-reaching opportunity to become a solar showcase — to set an example for all utilities, whether public or privately owned, of how to accelerate the use of solar technologies. The Department of Defense (DOD) is a major consumer of energy and a major provider of housing. A multitude of opportunities exist for DOD to demonstrate the use of solar.

The Agency for International Development (AID) works full time in helping other countries to meet their essential needs, including energy. Solar and renewable resources hold significant potential for these countries and, through AID, we can assist in promoting the worldwide application
of these technologies.

The Department of Energy has a particularly significant responsibility in aiding the development and encouraging the use of solar energy technologies, in providing back-up information and training for users of solar, and, generally, in directing our government-funded research and development program to ensure that future solar and renewable technologies are given the resources and institutional support that they need.

As a government-wide study, the Domestic Policy Review of Solar Energy has provided a unique opportunity to draw together the disparate functions of government and determine how best to marshal all of the government’s tools to accelerate the use of solar and renewable resources. As a result of that study, the set of programs and funding recommendations that I have already made and am adding to today will provide more than $1 billion for solar energy in FY 1980, with a sustained Federal commitment to solar energy in the years beyond. The FY 1980 budget will be the highest ever recommended by any President for solar energy. It is a significant milestone for our country. This $1 billion of Federal expenditures — divided between incentives for current use of solar and renewable resources such as tax credits, loans and grants, support activities to develop standards, model building codes, and information programs, and longer term research and development — launches our Nation well on the way toward our solar goal. It is a commitment we will sustain in the years ahead.

I am today proposing the establishment of a national Solar Bank as a government corporation to be located within the Department of Housing and Urban Development (HUD). It will provide a major impetus toward use of today’s solar technologies by increasing the availability of financing at reasonable terms for solar investments in residential and commercial buildings. The Solar Bank will be funded at $100 million annually out of the Energy Security Trust Fund from revenues generated by the windfall profits tax. The Bank will be authorized to provide interest subsidies for home improvement loans and mortgages for residential and commercial buildings. It will pay up front subsidies to banks and other lending institutions Which, in turn, will offer loans and mortgages for solar investments at interest rates below the prevailing market rate. Ceilings on the amount of the loan or portion of a loan which can be subsidized will be set.

The Solar Bank will be governed by a Board of Directors including the Secretary of HUD, the Secretary of Energy, and the Secretary of the Treasury. The Board of Directors will be empowered to set the specific level of interest subsidy at rates which will best serve the purposes of accelerating the use of solar systems in residential and commercial buildings. Standards of eligibility for systems receiving Solar Bank
assistance will be set by the Secretary of HUD in consultation with the Secretary of Energy. The Solar Bank I have proposed is similar in many respects to that introduced by Congressman Stephen Neal of North Carolina. A companion bill has been introduced in the Senate by Senator Robert Morgan of North Carolina. To them. and to the co-sponsors of this legislation, we owe our gratitude for the hard work and sound conceptual thinking that has-been done on how a Solar Bank should be designed. The Solar Bank will complement the residential and commercial tax credits that I originally proposed in April 1977 and that were signed into law with the National Energy Act last November.

To provide full and effective coverage for all solar and renewable resource technologies which can be used in residential and commercial buildings, I have recently proposed two additional tax credits, to be funded out of the Energy Security Trust Fund. I am directing the Department of the Treasury to send to the Congress legislation which will provide a 20% tax credit up to a total of $2,000 for passive
solar systems in new homes. Credits will also be proposed for passive solar in commercial buildings. Passive solar applications are competitive today, but we need to provide incentives to owners, builders, architects, and contractors to ensure early and widespread use.

I am also directing the Treasury to prepare and transmit
legislation to provide a tax credit for purchasers of airtight
woodburning stoves for use in principal residences. This
credit would equal 15% of the cost of the stove, and will
be available through December 1982. There is a great potential
to expand significantly the use of wood for home heating. It
can help lower residential fuel bills, particularly as oil
and natural gas prices increase.

With these levels of assistance, hot water heating can
be made fully competitive with electricity. In many instances,
complete passive solar home designs, including solar heating
and cooling, will be economically attractive alternatives.

A strong Federal program to provide accurate and up-to-
date solar information to homeowners, builders, architects
and contractors will be coupled with these financial incentives. The Department of Energy has established a National Solar User Information Program to collect, evaluate and publish
information on the performance of solar systems throughout
the country. Expanding the government’s information dissemina-
tion systems through seminars, technical journals, state energy
offices, and the Solar Energy Research Institute will be a
major thrust of DOE’s program in 1980. The four Regional
Solar Energy Centers will become fully operational in 1980,
providing information to the general public and to groups
such as builders, contractors, and architects who will play
key roles in the acceleration of solar technologies.
To be fully effective, however, these incentives must
be combined with a determined effort by the architects,
engineers, and builders who design and construct our homes
and offices, schools, hotels, restaurants, and other buildings
we live and work in. I am calling upon thE deans of our
schools of architecture and engineering to do their part by
making the teaching of solar energy principles an essential
part or their curricula. The young men and women being
trained today must learn to regard the solar energy and overall
energy efficiency of the buildings they design as no less
important than their structural integrity. I call as well
on America’s builders to build and market homes which offer
the buyer freedom from escalating utility bills.

In the end, it will be consumers of this country who
will make the purchasing decisions that will dictate the
future of this industry_ They must have confidence in
the industry and in the products which it produces before
they will be willing to make necessary investments. To
this end. both industry and government must be ever vigilant
to assure that consumers are well protected from fraud and
abuse.
* * * * *
Significant opportunities for use of existing solar
technologies are also available in the agricultural and
industrial sectors of our economy. Industrial process heat
can be generated using solar technologies. Critical agricultural activities — fueling tractors, running irriga:ion pumps and drying crops — provide numerous opportunities for the use
of solar and other renewable resources. Biomass, gasohol, wind energy, low head hydro, and various direct solar technologies hold significant promise in the agricultural and industrial sectors. I will soon be
forwarding legislation to the Congress which will:
Provide a 25 investment tax credit for agricultural and industrial process heat uses of solar energy. This is a 15% addition to the existing investment tax credit and it will remain available through 1989. This responds directly
to the concern expressed in the Domestic Policy
Review that the tax credit currently provided in
the National Eoergy Act is set at too low a level
and expires too early to provide needed incentives.
These uses now account for about 25% of our energy
demand. Substitution of solar and it her renewable
resources for a portion of this energy would
significantly reduce our dependence on foreign oil.
Permanently exempt gasohol from the Federal gasoline
excise tax. More and more Americans are learning
that a gasohol blend of 90 gasoline and 10 alcohol
which is made from various agricultural products
or wastes — is an efficient octane-boosting fuel
for automobiles and other gasoline engines.
The existing tax incentives of the National Energy Act
will continue to stimulate the uses of these teohnologies
in the industrial and agricultural sectors.
The Department of Agriculture will have a significant
responsibility for informing farmers and other agricultural
users of energy about how solar and other renewable sources
can begin to help meet their needs. The Farmers Home Adminis-
tration and other agencies within the Agriculture Department
will continue to provide financial and technical assistance
to farmers in using solar and other renewable technologies.
The TVA is demonstrating what can be done by utilities
in helping private industries, farmers, and residential
customers apply existing solar technologies. The goal of
the TVA’s “Solar Memphis” program is to install 1,000 solar
water heaters this year by offering long-term, low-interest
loans, by inspecting solar installations, and by backing
manufacturers’ warranties. In addition, the TVA’s 1.75 million
square foot passive solar office complex in Chattanooga, Tennessee will be designed to be completely energy self-sufficient and will be a model for the nation in the use of renewable technologies in office buildings.

The Small Business Administration is now operating a
solar loan program for small manufacturers and purchasers
of solar technologies. Next year, the SBA aims to triple
the amount of funds available to small businesses under this
program over the amount originally appropriated. We will
also marshal the efforts of agencies such as the Economic
Development Administration to include solar and other renewable
resources within their assistance programs.
These activities, along with the basic information
dissemination programs of the Department of Energy, will help
increase the use of solar and other renewable resource technologies in residential, commercial, agricultural, and industrial buildings.

Finally, we will strive to increase use of solar energy
by the Federal government itself. An estimated 350 solar
systems will be placed in government facilities and buildings
over the next fifteen months. Energy audits of all large
federal buildings will be completed in 1979. DOE will con-
tinue to develop guidelines which take into account the
lifetime energy costs of various systems. The Department
of Defense, which accounts for about 72% of all government-
owned buildings, 1s playing a major role in the federal solar
buildings program. To date, DOD has over 100 solar projects
in various stages of completion, ranging in size from solar
hot water heaters in residences to solar heating and air
conditioning of Naval, Air Force and Army base facilities.
When all of the presently planned solar projeots are complete,
DOD estimates that they will be providing more than 20 billion
Btu’s of energy. The Federal government must set an example,
and I call upon the states to do likewise.
* * * *
The Domestic Policy Review recommended several important
changes in the direction and nature of the Federal research
and development program for future solar and renewable resource
technologies. It found that solar demonstration programs
for active hot water systems and high-cost centralized solar
electric technologies had been overemphasized at the expense
of those systems which hold wider potential to displace the
use of oil and natural gas.

As a result of the Domestic Policy Review, the FY 1980
budget for DOE’s research and development program for solar
and renewable energy sources was redirected toward technologies
such as photovoltaics, biomass, wind energy, and systems for
generation of process heat. To respond to these new priorities,
over $130 million in increased funding was provided in the
R&D program, an increase of 40% over FY 1979 levels.

While solar heating and cooling units are already being
used to meet the energy requirements of buildings throughout
the country, the DOE is supporting continued advances in these
products, by providing funds to industry, small business,
Federal laboratories, and the research community to reduce
the cost of solar systems and to improve performance. Improved
system design, analysis, and system-integration activities
are being carried out for active heating and cooling systems,
passive systems, and agricultural and industrial process
heating systems. The program also supports product improve-
ments for such key components as solar collectors, energy
storage units, and controls.
Photovoltaics, which permit the direct conversion of
sunlight into electriCity, hold significant promise as a solar
technology for the future. Research and development efforts
are directed at reducing the cost of photovoltaic systems.
In addition, new systems which produce hydrogen through
an electrochemical reaction can be used to produce electricity.
There is no question about our technical ability to use photo-
voltaics to generate electricity. These systems are already
used extensively to meet remote energy needs in our space
program. The main issue now is how to reduce the costs of
photovoltaics for grid-related applications such as providing
electricity to residential buildings over the next five to
ten years. The photovoltaic program involves all aspects
of research and development, from hardware components to
materials, marketing and distribution systems. The Federal
government has already made commitments to purchase $30 million
of photovoltaic systems at a specified cost per watt as a
means of stimulating private efforts to reduce the cost of
this technology.

DOE’s research and development program has also emphasized
wind energy. Our objective is the development of wind systems
which will compete cost-effectively with conventional technologies. There will also be efforts to develop wind technologies for small units suitable for farm and rural use and for large utility units.

Biomass conversion holds significant promise as a major
source of renewable energy over the coming decades. Liquid
and gaseous fuels produced from organic wastes and crops can
displace oil and natural gas both as direct combustion fuels
and as chemical feedstocks. Some biomass fuels, such as gasohol, are in use today. Others, such as liquid fuels from organic wastes, require additional research and development.

In the coming fiscal year, DOE will complete construction
of the solar power tower in Barstow, California. Such systems
could potentially displace some oil- and gas-fired generators.
The DOE solar thermal program is also concentrating on reducing
to near commercial levels the costs of distributed receiver
systems by 1983 and similarly reducing the future costs of
central receiver systems. This program supports R&D efforts
in advanced space heating and cooling, photovoltaic concen-
tration, and high temperature industrial heat applications.

The oceans are another potential source of solar energy.
We will pursue research and development efforts directed toward
ocean thermal energy conversion, and other concepts such as
the use of salinity gradients, waves, and ocean currents.
DOE is working with the National Aeronautics and Space
Administration to evaluate the concept of a solar power
satellite system (SPS) which would capture solar energy in
space for transmission to earth. A determination will be
made in January 1981 on whether this system should proceed
to the exploratory research stage.

DOE will undertake intensified efforts involving solar
energy storage and basic solar energy research. In the basic
research area, emphasis is being placed on the development
of new materials to better use or convert the sun’s energy,
solar photochemistry (including the possibility of using
electrochemical cells to convert the energy of sunlight into
electricity and/or fuels) and research on artificial photo-
synthesis.

In Fiscal Year 1980 we will begin building a new 300-acre solar research facility for the Solar Energy Research Institute at Golden, Colorado. This institute, along with
four regional solar centers established across the country,
will help provide a focus for research and development
activities and will become information centers for individuals
and firms who market or install solar equipment.

In addition to DOE’s research and development activities,
several other agencies will continue to support commercial
introduction of solar technologies as they become available.
AID, TVA and the Department of Agriculture now have and will
continue to have significant responsibilities in the demon-
stration of new solar and renewable resource systems.

The Domestic Policy Review identified numerous specific
program suggestions, many of which I believe can and should
be implemented. Over the course of the coming weeks, I will
be issuing a series of detailed directives to the appropriate
agencies to implement or consider recommendations in
accordance with my instrUctions.

Some of these suggestions involve detailed budget issues
which should be taken up in our normal budget planning
process. In order to provide much-needed flexibility to DOE
to respond to these — and other — suggestions, I am directing
the Office of Management and Budget to provide an additional
$100 million to DOE for use on solar programs beyond that
which had previously been identified for the FY 1981 base
program.

…………..

An essential element of a successful national solar
strategy must be a clear central means of coordinating the
many programs administered by the numerous agencies of
government which have a role in accelerating the development
and use of these energy sources. I am today directing that
the Secretary of Energy establish a permanent, standing
Subcommittee of the Energy Coordinating Committee (ECC) to
monitor and direct the implementation of our national solar
program. The ECC membership includes the major agencies
which have responsibilities for solar and renewable resource
use. By using this existing mechanism, but strengthening
its focus on solar and renewable activities, we can provide
an immediate and direct means to coordinate the Federal solar
effort. The Subcommittee will report on a regular basis to
the ECC, and through it directly to me, on the progress of
our many and varied solar activities. The Subcommittee will
be able to identify quickly any problems that arise and the
ECC will provide a forum to resolve them. Since the member-
ship of the ECC includes key agencies of the Executive Office
of the President, especially the Office of Management and
Budget, the Special Assistant to the President for Consumer
Affairs, the Council on Environmental Quality, and the
Domestic Policy Staff, direct and easy access to my staff
and Members of the Cabinet is assured.

The Standing Subcommittee of the ECC has an extremely
important responsibility. I am expecting it to provide
the leadership and the day-to-day coordinating function
which will be essential as we strive to meet our national
solar goal.
…………

We are today taking an historic step. We are making a
commitment to as important a goal as we can set for our
Nation — the provision of 20% of our energy needs from solar
and renewable sources of energy by the year 2000.

We are launching a major program — one which requires
and has received a significant commitment from the Federal
government to accelerate the development and use of solar
technologies.

We are marshalling the best that the agencies of government
can provide and asking for the commitment of each of them,
in their diverse and numerous functions, to assist our country
in meeting our solar goal.

The stakes for which we are playing are very high. When
we speak of energy security, we are in fact talking-about
how we can assure the future economic and military security
of our country — how we can maintain the liberties and freedoms which make our Nation great.

In developing and implementing a national solar strategy
we are taking yet another critical step toward a future which
will not be plagued by the kinds of energy problems we are
now experiencing, and which will increase the prospects of
avoiding worse difficulties.

We have set a challenge for ourselves. I have set a
challenge for my Presidency. It will require the best that
American ingenuity can offer, and all the determination which
our society can muster. Although government will lead, inspire,
and encourage, our goal can be achieved only if each American
citizen, each business, and each community takes our solar
goal to heart.

Whether our energy future will be bright — with the
power of the sun — or whether it will be dim, as our fossil
resources decline, is the choice that is now before us. We
must take the path I have outlined today.~
JIMMY CARTER
THE WHITE HOUSE,
June 20, 1979.

Looking Ahead 30-40 Years – A Risky Business

History has always been my favorite subject, starting in high school, and still constitutes a major part of my personal reading. Needless to say I have a strong interest in other topics as well, as attested to by my long career in science and engineering and education/mentoring activities with young people. What often fascinates me is looking back at how things have changed in the past, often in unexpected ways, and how people looking back in the decades ahead will put their perspectives on what we are doing today. This blog post is my attempt to flesh out these thoughts, while acknowledging the difficulty of looking into the future. If I look far enough into that future I will not be around to suffer the slings and arrows of projecting incorrectly, or collecting the kudos for projecting accurately. Nevertheless, it feels like a stimulating and challenging activity to undertake, and so here goes.

image

Let me start by going back seven decades to the 1940s when I was a young kid growing up in the Bronx and just beginning to form my likes and dislikes and develop opinions. My love for science fiction developed at that time and was probably a dead give-away of my future career interests. An important shaping event was the dropping of the first atomic bomb on Japan on August 6, 1945, an event that I still clearly remember learning about on the radio while sitting in the back seat of my parents’ car. Without a deep or much of any understanding at that time, I somehow sensed that the world had changed in that August moment. I still feel that way after many subsequent years of reading and studying.

The following decades saw several other unexpected and defining events: the addition of fusion weapons (hydrogen bombs) to our nuclear arsenals, commercial applications of controlled nuclear fission (nuclear submarines and nuclear-powered surface ships, and the first commercial nuclear power plant which was actually a land-based nuclear submarine power plant), development and emergence of the transistor as a replacement for vacuum tubes (first using germanium and then silicon), the development of the first solar cell at Bell Labs, the development and application of laser technology, the emergence of the information technology industry based on the heretofore abstract concepts of Boolean algebra (0s and 1s), and the increasing attention to a wide range of clean energy technologies that had previously been considered impractical for wide scale application – wind, solar, geothermal, ocean energy, fuel cells, advanced battery technologies, and a broad range of alternative liquid and gaseous fuels. Each in its own way has already changed and will further change the world in future decades, as will other technologies that we now only speculate about or cannot imagine. This is the lesson of history – it is difficult for most of us to look ahead and successfully imagine the future, and one of my earlier blog posts (‘Anticipating the Future: It Can Be Difficult’) discusses this topic. In the following paragraphs I speculate about the future with humility but also great anticipation. My only regret is that I will not live long enough to see most of this future unfold.

I will divide this discussion into two parts on which I have focused some attention and feel that I have some knowledge – medicine/health care, and energy. That leaves all too many aspects of the future that I don’t feel qualified to comment upon – e.g., what more will we learn about Amelia Earhart’s disappearance, Cuba’s possible participation in John Kennedy’s assassination, and the future of the tumultuous Middle East and the countries of the former Soviet Union. My primary focus in this post will be on the latter of the two parts, energy.

To help you understand my interest in medicine and health care I confess that at one point in my career, before committing to pursuing a PhD in physics, I gave serious consideration to attending medical school. During this period in the early 1960s I was a research scientist at Texas Instruments (TI) and was excited about the possibilities of miniature electronics which TI was pioneering in. I even suggested to my TI bosses that we undertake the application of transistors and sensors to artificial vision, but it was much too early for the company to make such a commitment. Today, 50 years later, that vision is being realized.

I also see great promise in the application of miniature electronics to continuous in-vivo diagnosis of human health via capsules that float throughout a human’s blood network, monitor various chemical components, and broadcast the results to external receivers. This will depend on low-powered miniature sensors and analysis/broadcast capability powered by long-lasting miniature batteries or an electrical system powered by the human body itself. Early versions are now being developed and I see no long-term barriers to developing such a system.

A third area in which I see great promise is the non-invasive monitoring of brain activity. This is a research area that I see opening up in the 21st century as we are beginning to have the sensitive tools necessary to explore the brain in detail. Given that the brain is responsible for so many aspects of our mental and physical health I expect great strides in the coming decades in using brain monitoring to address these issues.

The energy area is where I have devoted the bulk of my professional career and where my credibility may be highest – at least I’d like to think so. Previous blog posts address my thoughts on a wide range of current energy, water-energy, and related policy issues. Recognizing that changes in our energy systems come slowly over decades and sometimes unexpectedly, as history tells us, I will share my current thoughts on where I anticipate we will be in 30-40 years.

Let me start with renewable energy – i.e., solar, wind, hydropower, geothermal, biomass, and ocean energy. I have commented on each of these previously, but not from a 30-40 year perspective. Renewables are not new but, except for hydropower, their entering or beginning to enter the energy mainstream is a relatively recent phenomenon. Solar in the form of photovoltaics (PV) is a truly transformative technology and today is the fastest growing energy source in the world, even more so than wind. This is due to significant cost reductions for solar panels in recent years, PV’s suitability for distributed generation, its ease and quickness of installation, and its easy scalability. As soon as PV balance-of-system costs (labor, support structures, permitting, wiring) come down from current levels and approach PV cell costs of about $0.5-0.7 per peak watt I expect this technology to be widespread on all continents and in all developed and developing countries. Germany, not a very sunny country but the country with the most PV installed to date, has even had occasional summer days when half its electricity was supplied by solar. In combination with energy storage to address its variability, I see PV powering a major revolution in the electric utility sector as utilities recognize that their current business models are becoming outdated. This is already happening in Germany where electric utilities are now moving rapidly into the solar business. In terms of the future, I would not be surprised if solar PV is built into all new residential and commercial buildings within a few decades, backed up by battery or flywheel storage (or even hydrogen for use in fuel cells as the ultimate storage medium). Most buildings will still be connected to the grid as a backup, but a significant fraction of domestic electricity (30-40%) could be solar-derived by 2050. The viability of this projection is supported by the NREL June 2012 study entitled ‘Renewable Electricity Futures Study’.

Hydropower already contributes about 10% of U.S. electricity and I anticipate will grow somewhat in future decades as more low-head hydro sites are developed.

For many years onshore wind was the fastest growing renewable electricity source until overtaken recently by PV. It is still growing rapidly and will be enhanced by offshore wind which currently is growing slowly. However, I expect offshore wind to grow rapidly as we approach mid-century as costs are reduced for two primary reasons: it taps into an incredibly large energy resource off the coasts of many countries, and it is in close proximity to coastal cities where much of the world’s population is increasingly concentrated. In my opinion, wind, together with solar and hydro, will contribute 50-60% of U.S. electricity in 2050.

Other renewable electric technologies will contribute as well, but in smaller amounts. Hot dry rock geothermal wells (now called enhanced geothermal systems) will compete with and perhaps come to dominate traditional geothermal generation, but this will take time. Wave and tidal energy will be developed and become more cost effective in specific geographical locations, with the potential to contribute more in the latter part of the century. This is especially true of wave energy which taps into a large and nearly continuous energy source.

Biomass in the form of wood is an old renewable energy source, but in modern times biomass gasification and conversion to alternative liquid fuels is opening up new vistas for widescale use of biomass as costs come down. By mid-century I expect electrification and biomass-based fuels to replace our current heavy dependence on petroleum-based fuels for transportation. This trend is already underway and may be nearly complete in the U.S. by 2050. Biomass-based chemical feedstocks will also be widely used, signifying the beginning of the end of the petroleum era.

I expect that other fossil fuels, coal and natural gas, will still be used widely in the next few decades, given large global resources. Natural gas, as a cleaner burning fossil fuel, and with the availability of large amounts via fracking, will gradually replace coal in power plants and could represent 30-40% of U.S. power generation by mid-century with coal generation disappearing.

To this point I have not discussed nuclear power, which today provides close to 20% of U.S. electricity. While I believe that safe nuclear power plants can be built today –i.e., no meltdowns – cost, permanent waste storage, and weapons proliferation concerns are all slowing nuclear’s progress in the U.S. Given the availability of relatively low-cost natural gas for at least several decades (I believe fracking will be with us for a while), the anticipated rapid growth of renewable electricity, and the risks of nuclear power, I see limited enthusiasm for its growth in the decades ahead. In fact I would not be surprised to see nuclear power supplying only about 10% of U.S. electricity by 2050, and less in the future.

To summarize, my picture today of an increased amount of U.S. electricity generation in 2050 is as follows:

Generating Technology : Percent of U.S. Generation in 2050
nuclear: 5-10
coal: 0-5
Oil: 0
natural gas: 30-40
solar + wind + hydro: 50-60
other renewables: 5-10

I am sure that some readers of this post will take strong issue with my projections and have very different thoughts about the future. I welcome their thoughts and invite them to join me in looking ahead. As the title of this post acknowledges, looking ahead is risky business, but it is something I’ve wanted to do for a while. This seems as good a time as any to do so.

image

Peak Oil: A Valid or Invalid Concept?

One topic that has come up consistently in my 40+ years of reading and thinking about energy is the notion that the world is running out of fossil fuels. The reality, as best I can tell, is that this is not true on any near-term timescale. Fossil fuels are finite and we are using them faster than nature can replace them, but much remains to be found and utilized if people wish. The concerns stimulated by H. King Hubbert in 1956, when he proposed his theory on oil well production and depletion and published the ‘Hubbert Curve’ (see below) are valid for some assumptions but ignore other realities that make his conclusions, and those of others who have accepted his theory, invalid for long-term planning. I will explain why I believe this in the discussion that follows, recognizing that part of the discussion turns on a definition of what is meant by Peak Oil.

image
A 1956 world oil production distribution, showing historical data and future production, proposed by M. King Hubbert; it has a peak of 12.5 billion barrels per year about the year 2000

Hubbert’s Peak Theory is based on the obvious fact that the utilization of a finite resource must go through an initial start-up, reach a peak level of production, and eventually tail off as the resource is depleted. This is common sense, applicable to all non-renewable resources, and not disputable. What is disputable is the shape of the production/depletion curve and the assumptions that went into identifying the resource to be utilized and eventually depleted. Much of the public discussion that has ensued about Peak Oil, the application of Hubbert’s theory to oil (petroleum) extraction, since publication of Hubbert’s 1956 paper has revolved about these two facets of his theory.

It is important to clarify up front that Peak Oil is the point in time when oil extraction reaches its maximum rate and is not synonymous with oil depletion. Following a peak in extraction rate about half of the resource is still available for extraction, and production rate decreases steadily thereafter. Much discussion has focused on the shape of the declining curve after Peak Oil is reached – plateau? sharp decline? slow decline? – and the implications for the U.S. and world economies that are so dependent on oil supplies.

Hubbert’s theory received great visibility when he correctly predicted, in his 1956 paper, that U.S. domestic oil production would peak between 1965 and 1971. He used the terms ‘peak production rate’ and ‘peak in the rate of discoveries’; the term Peak Oil was introduced in 2002 by Colin Campbell and Kjelll Aleklett when they formed ASPO, the Association for the study of Peak Oil & Gas.

Where the application of Hubbert’s theory has failed (I don’t blame him) is in the boundary conditions (assumptions) on which his theory is based. He did not anticipate, nor did others, the rapid emergence of unconventional oil and the substitutions for oil (alternative fuels, electrification of transportation) that have been or are being developed. He did mention these possibilities and did his best with the information available at the time; I cannot say that about modern Peak Oil theorists who still put out stories intended to scare.

What has changed is that oil production no longer depends only on ‘conventional’ oil supplies but increasingly on ‘unconventional’ resources that are an increasing part of total oil supply. A few definitions, courtesy of Wikipedia, will help:

“Conventional oil is oil that is generally easy to recover, in contrast to oil sands, oil shale, heavy crude oil, deep-water oil, polar oil and gas condensate. Conventional oil reserves are extracted using their inherent pressure, pumps, flooding or injection of water or gas. Approximately 95% of all oil production comes from conventional oil reserves.

Unconventional oil is oil that is technically more difficult to extract and more expensive to recover. The term unconventional refers not only to the geological formation and characteristics of the deposits but also to the technical realisation of ecologically acceptable and economical usage.”

Given these definitions, we can probably all agree that the age of cheap oil is over, as reflected in the following graph of historical oil prices:
image

As reported by former BP geologist Dr. Richard Miller in a speech at University College of London in 2013: “..official data from the International Energy Agency, the US Energy Information Administration, the International Monetary Fund, and other sources, showed that conventional oil had most likely peaked around 2008.” He further pointed out that “peaking is the result of declining production rates, not declining reserves”, that many oil producing countries are already post-peak, and that conventional oil production has been flat since about the middle of the past decade. There has been growth in liquid supply since then, largely due to natural gas liquids and oil derived from oil sands. Reserves have also been growing due to new discoveries, improved oil field extraction technology, and increasing reliance on unconventional resources.
image
image
image

The debate about Peak Oil has been underway for quite a few decades, many words have been spoken and much ink has been used to illuminate and document that debate, and Peak Oil still has its adherents. One of my purposes in exploring this subject for my blog was to review the latest literature and form an updated opinion. I have – Peak Oil is not real if you take into account the full liquid fuels situation. In fact, in the course of my research I have come across several opinions that I fully agree with and share them with you as my summation of this post.

(Wikipedia)”In 2009, Dr. Christoph Rühl, chief economist of BP, argued against the peak oil hypothesis:

Physical peak oil, which I have no reason to accept as a valid statement either on theoretical, scientific or ideological grounds, would be insensitive to prices. (…) In fact the whole hypothesis of peak oil – which is that there is a certain amount of oil in the ground, consumed at a certain rate, and then it’s finished – does not react to anything…. Therefore there will never be a moment when the world runs out of oil because there will always be a price at which the last drop of oil can clear the market. And you can turn anything into oil into if you are willing to pay the financial and environmental price… Global Warming is likely to be more of a natural limit than all these peak oil theories combined. (…) Peak oil has been predicted for 150 years. It has never happened, and it will stay this way.

According to Rühl, the main limitations for oil availability are “above ground” and are to be found in the availability of staff, expertise, technology, investment security, money and last but not least in global warming. The oil question is about price and not the basic availability. Rühl’s views are shared by Daniel Yergin of CERA, who added that the recent high price phase might add to a future demise of the oil industry, not of complete exhaustion of resources or an apocalyptic shock but the timely and smooth setup of alternatives.”

One other opinion I agree with, by George Monbiot, writing in the guardian on 2 July 2012 (‘We were wrong on peak oil. There’s enough to fry us all’): “Some of us made vague predictions, others were more specific. In all cases we were wrong. In 1975 MK Hubbert, a geoscientist working for Shell who had correctly predicted the decline in US oil production, suggested that global supplies could peak in 1995. In 1997 the petroleum geologist Colin Campbell estimated that it would happen before 2010. In 2003 the geophysicist Kenneth Deffeyes said he was “99% confident” that peak oil would occur in 2004. In 2004, the Texas tycoon T Boone Pickens predicted that “never again will we pump more than 82m barrels” per day of liquid fuels. (Average daily supply in May 2012 was 91m.) In 2005 the investment banker Matthew Simmons maintained that “Saudi Arabia … cannot materially grow its oil production”. (Since then its output has risen from 9m barrels a day to 10m, and it has another 1.5m in spare capacity.)

Peak oil hasn’t happened, and it’s unlikely to happen for a very long time.”

Enough said!

Human Wastes: Another Energy Resource Waiting to Be Tapped

Recently I posted a blog entitled ‘Animal Wastes: An Energy Resource That Is Win-Win’. The Washington Post article reproduced below may be considered a follow-up to that blog but focused on using human wastes to generate energy. It usefully points out the several beneficial uses to which human wastes can be put and the economic benefits of doing so. It is worth reading!

…………………………………

WASTE, NOT WASTED
By Ashley Halsey III
Washington Post (April 6, 2014)

This is a topic that one must approach delicately so as not to offend the reader’s sensibilities, but since it is a matter of importance for which you may receive a bill for some portion of $470 million, we start out with an analogy.

You need energy, so you eat. Through the miracle of digestion, your body sorts what you have eaten, say, a pastrami on rye with a glob of coleslaw and a dill pickle, and plucks out the nutrients — proteins, carbohydrates and sugars it needs to generate power. Then it jettisons the rest.

What your body jettisons disappears forever, carried along in a huge network of sewers to a plant in the southeastern corner of Washington.

Just like you, that plant needs energy. Through a miracle called thermal hydrolysis, it soon will be able to sort through what you have jettisoned and use it to generate electricity.

Yes, from poop will come power — 13 megawatts of it. Enough electricity to light about 10,500 homes.

Ben Franklin never dreamed of this one.

While Ben may have denounced the scheme as impossible sorcery, he also noted that a penny saved is a penny earned, so he might have been at least intrigued by this notion.

More than a few pennies may be saved for the citizens of the District and for some Virginians and Marylanders. Those people — 2.2 million of them — get a monthly bill for the privilege of sending their thoroughly digested nutritional intake to the plant in Southeast Washington operated by D.C. Water.

A chunk of that monthly bill is passed on to another local utility — Pepco. D.C. Water is the electricity company’s No. 1 customer. By converting poop to power, the water company will cut its Pepco bill by about one third and reduce by half the cost of trucking treated waste elsewhere.

But enough about poop, a subject that makes many a reader a bit squeamish. Because we’d rather not drive you away from the description of a wholly remarkable plan that is very likely to affect your pocketbook, henceforth we will refer to the matter that flows through the sewage plant as “the product.”

In fact, you soon will learn, it is going to be turned into a genuine product. One with a price tag. One that you may buy back.

Think about it.

The product has shed the label “wastewater” to morph into something called “enriched water,” a term laden with many more intriguing possibilities.

“It could be a game changer for energy,” said George Hawkins, an environmentalist who became general manager of D.C. Water. “If we could turn every enriched-water facility in the United States into a power plant, it would become one of the largest sectors of clean energy that, at the moment, is relatively untapped.”

What’s nearing completion outside Hawkins’s office window, however, is something never built on this scale anywhere in the world. A decade of study came first, and to see whether the system would work here, D.C. Water paid smaller European utilities that use the same process to modify their product so it more closely matched that which Washington produces.

“We’re confident that this model will work,” Hawkins said.

Something called the Cambi, for the Norwegian company that builds it, sits at the heart of it.

image

When the product flows into the more than 150-acre plant known as Blue Plains, it goes through a couple of mesh filters to shed the debris swept up in the sewer system. Then it goes through a treatment process that turns it into what the Environmental Protection Agency categorizes as class B waste, enough to fill 60 big dump trucks with 1,600 tons of product every day.

And out the gate it goes, at a cost of $16 million a year.

That will change in May and June, as D.C. Water begins a phase-in intended to get the new system into full service by January.

Here’s how it works:

image

A centrifuge drains off the liquid, and then the screened product will flow into four pulpers, tall stainless steel vats that look like Gulliver’s soda cans. Steam recycled from farther down the process is used to preheat it, and then it flows into one of the two dozen Cambis. They sit like a row of gleaming, blunt-nosed rockets, but they serve as pressure cookers.

The product is heated to more than 320 degrees under as much as 138 pounds of pressure for 22 minutes. Then it moves to a flash tank, where the temperature and pressure drop dramatically and a critical change takes place.

“Because of that pressure difference, the cells burst,” said Chris Peot, director of resource recovery at D.C. Water.

When the cells burst, the methanogens can have their way with them.

That happens in the digesters. They are four huge concrete vats, 80 feet tall and 100 feet in diameter. Right now, their interiors are like vast cathedrals, with domed ceilings and a shaft of light glancing through a hole in the top.

When the whole operation gets rolling, inside them is not a place you would want to be. The product will flow in from the four flash tanks, mixing with the methanogen microorganisms. Methanogens create marsh gases. In the digestive tracts of animals and humans, they also create gas, to the particular delight and fascination of middle-school boys.

That’s what this is all about — creating methane to generate electric power.

The temperature inside the digesters is kept at about that of the human body: 98.6 degrees Fahrenheit. Each digester chamber has five vertical blue tubes, as big around as manhole covers, that suck the product from the bottom and recycle it to near the top. After the product stews there for about two weeks, the methane produced by the process will vent out a 12-inch diameter pipe in the crown.

After a bit more purification, the methane will be used to fire three jet turbine engines that create electricity. A byproduct of that process: steam, which is funneled back to the pulper.

The power portion of the plant will be operated under contract by Pepco. The deal doesn’t allow D.C. Water to sell the power it generates, a moot point since the process of creating it eats up 3 megawatts and the remaining 10 megawatts will be sucked up by operations at Blue Plains.

Once the digester’s work is done, the remaining product will be drained out into dump trucks, but their total load will be cut in half to about 600 tons a day.

Remember that we told you earlier that what you jettison disappears forever? Let’s reconsider that, because there’s actually a chance you’ll see it again. In a strikingly different form. Right back where you saw it first: on your dinner table.

The product that has been trucked from Blue Plains is rated class B. But the product that comes out of the digester will be rated class A.

The difference?

Class B still has some bad stuff in it. Most of it is shipped to farmers, some in Maryland but most of them in Virginia. They get it free, but unless they let it sit for at least a month, and sometimes up to 18 months, the only things they can use it to fertilize are trees and sod used by landscapers.

Class A product can be used right away on anything, including fields that grow the fruits and vegetables you buy at the grocery store and serve for dinner.

That’s because, Peot says, in the Cambi, “All the pathogens are completely obliterated.”

“Our product has these super-elevated levels of these naturally occurring, extremely important plant hormones,” Peot said.

It is a more environmentally sound choice than the chemical fertilizer alternatives. In the raw, the class A product is so potent it needs to be cut with other materials before it is used to fertilize crops.

“We can blend this with sawdust and sand and make a topsoil substitute for use in green infrastructure projects,” Peot said. “We’re still going to go to farms while we try to build the market for this product.”

Hawkins, D.C. Water’s general manager, chimed in: “It’s clean, organic fertilizer. Conceivably, we could sell this product at Home Depot. ”

Unlike most innovations in waste treatment locally and nationwide, this project was not mandated by a federal court order. D.C. Water’s board decided it was a worthwhile investment of ratepayers’ money.

“This was one of the easier $500 million decisions that we’ll ever ask the board to make,” Hawkins said, ticking off the value: a savings in electrical costs of about $10 million a year; lowering the cost of hauling away treated waste; the potential to generate a profit by selling the product; a reduction by one third in the plant’s carbon footprint; and one more critical virtue.

For about three days a month ago, residents of part of Northwest Washington were told to boil their drinking water for fear it might be contaminated. That scare was caused by a power problem that shut down a pumping station.

“It wasn’t Pepco’s problem. It was internal to us,” Hawkins said. “We have great fears here about what would happen if there was a catastrophic power failure and Blue Plains stopped.”

Generating power internally will provide enough juice to keep the basics running, were that to happen, he said.

“This is the rare combination of both environmentally and economically positive,” Peot said.

image
A Cambi installation in the UK