Two New Books Worthy of Your Attention

I am pleased to use my blog to bring two new books to your attention, one just published and one to be published next month.  Both are highly recommended.

The first, just published by W.W.Norton and co-authored by Lester Brown and several of his Earth Policy Institute colleagues, is ‘The Great Transition: Shifting from Fossil Fuels to Solar and Wind Energy’.  It addresses the energy transition that is unfolding rapidly around us and is a topic I have been writing and speaking about for many years, including in this blog. Lester has been an important part of this discussion from day one  and in this book he and his fellow authors “..explain the environmental and economic wisdom of moving to solar and wind energy and show how fast change is coming.” It is a global topic that needs increased public visibility and discussion, one that will impact the energy systems that our children and grandchildren will inherit.  Without going into too much detail I will quote just a few lines from the book’s preface and  the comments of two book reviewers:

“Preface: Energy transitions are not new. Beginning several centuries ago, the world shifted from wood to coal. The first oil well was drilled over 150 years ago. Today we are at the start of a new energy transition, one that takes us from an economy run largely on coal and oil to one powered by the sun and wind. This monumental shift, which is just getting underway, will compress a half-century of change into the next decade.

The purpose of this book is to describe how this great transition is starting to unfold. While the book cuts a wide swath and takes a global view, it is not meant to be a comprehensive study of the world energy economy. Each technology discussed here easily deserves its own book, as do many topics important to the transition that are not discussed in depth here, such as energy efficiency, the “smartening” of electrical grids, energy savings opportunities in industry, and batteries and other energy storage…..”

Reviewer comments: “Brown’s ability to make a complicated subject accessible to the general reader is remarkable..”(Katherine Salant, Washington Post); “..a highly readable and authoritative account of the problems we face from global warming to shrinking water resources, fisheries, forests, etc. The picture is very frightening. But the book also provides a way forward.”(Clare Short, British Member of Parliament).

The second recommended book, due out next month, is Gustaf Olsson’s second edition of  ‘Water and Energy Threats and Opportunities’. The first edition was published by the International Water Association in June 2012.

In my review of his first edition I stated:  “Professor Olssons book, Water and Energy Threats and Opportunities, the result of a meticulous multi-year effort, meets an important and growing need: to define and illuminate the critical linkage between water and energy. He explores the water-energy nexus in detail, and carefully discusses its many implications, including for food production and its connection to global climate change. He properly and repeatedly emphasizes the important message that water and energy issues must be addressed together if society is to make wise and efficient use of these critical resources. Given its comprehensive scope and careful scholarship, the book will serve as a valuable addition to the libraries of students, researchers, practitioners, and government officials at all levels.”

In his expanded second edition Professor Olsson, a distinguished faculty member in industrial automation at Lund University in Sweden and a Distinguished Fellow of the International Water Association, adds additional and updated information on climate change,  energy system water requirements, renewable energy, and a clear and comprehensive discussion of the important subject of fracking for fossil fuel supplies which has recently emerged as a major public issue.

In its first incarnation Professor Olsson’s book qualified as a ‘bible’ on water-energy issues. In its second incarnation it qualifies even more so.

 

New book – ‘Energy Poverty: Global Challenges and Local Solutions’

Two years in the making, this 21-chapter book was released by Oxford University Press (OUP) on December 20, 2014. It addresses the importance of energy access in reducing poverty and increasing human welfare, a topic just beginning to receive widespread visibility. A brief description of the book is attached below; a Table of Contents can be found at the following website:
https://global.oup.com/academic/product/energy-poverty-9780199682362?cc=dk&lang=en&

image

Edited by Antoine Halff, Benjamin K. Sovacool, and Jon Rozhon

A one-stop treatment of energy poverty, an issue whose pivotal role in the fight for human development and against poverty is only now being recognised
A practical guide and reference work for policymakers and practitioners in the field
Provides a fresh perspective on tomorrow’s energy challenges
Brings together diverse viewpoints and includes contributions from experts and practitioners from all over the world, including China, India, Brazil, sub-Saharan Africa, and the Middle East
Includes chapters from authors at the cutting edge of research: Fatih Birol, chief economist of the International Energy Agency, Han Wenke, head of China’s Energy Research Institute, Nigel Bruce of the World Health Organisation, and Jason Bordoff, former senior advisor on energy to President Barack Obama”

I also attach a copy of the chapter I was privileged to write, ‘Energy and Water: A Critical Linkage”, on a topic that is also receiving increasing attention. It is a bit long compared to my usual blog posts, but worth reading. A special gift awaits those who read to the end of the chapter.
…………………………………………
image
Page 2
image
image
image
image
image
image
image
image
image
image
image
image
image

Desalination: An Important Part of Our Water Future

Desalination (or desalinization) – the process of removing dissolved salts from water – is a technology that has been used for centuries. References to desalination can be found as far back as the writings of Aristotle (320 BC) and Pliny the Elder (76 AD). It is widely used at sea to this day and has helped keep many early mariners alive during long ocean trips. In fact, a typical nuclear-powered U.S. aircraft carrier today uses waste reactor heat to desalinate 400,000 gallons of water per day.

image

Significant advances in desalination technology started in the 1900’s and took a major step during WW II because of the need to supply potable water to military troops operating in remote, arid areas. By the 1980’s desalination technology was commercially viable and commonplace by the 1990’s. Today there are more than 16,000 desalination plants worldwide, producing more than 20 billion gallons of drinkable water every day. This is expected to reach more than 30 billion gallons per day by 2020, with one third of that capacity in the Middle East. To put that number in perspective, current global water consumption is estimated to be just under 1,200 billion gallons.

image

Why is desalination so important? The earth is a water-rich planet, to the tune of about 300 million cubic miles of water, and each cubic mile contains more than one trillion gallons. The problem is that most of that water, approximately 97 percent, is in the oceans which have an average salt content (salinity) of 35,000 parts per million by weight, and drinking that water regularly can kill us. To quote ‘How Desalination Works’ by Laurie Dove: “Ingesting salt signals your cells to flush water molecules to dilute the mineral. Too much salt, and this process can cause a really bad chain reaction: Your cells will be depleted of moisture, your kidneys will shut down and your brain will become damaged. The only way to offset this internal chaos is to urinate with greater frequency to expel all that salt, a remedy that could work only if you have access to lots of fresh drinking water.”

What about the water that is not in the oceans? Three percent of 300 million cubic miles is still a lot of water. Unfortunately, most of that three percent is not easily available for our use. Some is tied up in icecaps and glaciers, some is tied up as water vapor in the atmosphere, and the rest is in groundwater, lakes and rivers. The other hard fact is that some of our freshwater supply is simply inaccessible due to its location and depth. The net result is that we make productive use of less than one percent of our global water resources.

image

Saline, salty water comes in different ‘strengths’ – seawater as mentioned above, and brackish water which has less salt than seawater but more salt than fresh water. It may arise from mixing of fresh water with seawater, a situation that is occurring more frequently as sea levels rise due to global warming, or it may occur in brackish fossil water aquifers that are quite old. Commonly accepted definitions of saline water are:
– fresh water: less than 1,000 parts per million (ppm)
– brackish water: 1,000-10,000 ppm
– highly saline water: 10,000-35,000 ppm (including seawater)

How does one separate salt from saline water to produce fresh water, and what are the barriers to more widespread use of desalination? The latter question is easily answered: the energy required to do the separation, the energy required in some cases to move fresh water to higher elevations, and the associated costs.

There are quite a few technologies today for removing salt from saline water, the oldest being sun-heated water that evaporates and is then condensed, leaving the salt behind. This is also a description of the earth’s hydrologic cycle. The most widely used desalination technologies today are reverse osmosis (RO/60%), multi-stage flash distillation (MSF/26%), and multi-effect distillation (MED/8.2%). Others include electrodialysis, electrode ionization, and hybrid technologies. Energy requirements (electrical + thermal) for desalinating a range of saline waters, expressed in kWh per cubic meter of fresh water and exclusive of energy required for pre-treatment, brine disposal and water transport, are: RO/3-5.5 kWh; MSF/13.5-25.5 kWH; MED/6.5-11 kWH. Reverse osmosis requires no thermal energy, just mechanical energy to force salty water through a membrane that separates the salt from the water. The laws of physics tell us that the minimum amount of energy required to desalinate seawater is about 1 kWh per cubic meter and under 2 kWh per cubic meter has been achieved in RO, leaving limited opportunities for further reductions.

Generally, costs of desalinated water are higher than those of other potable water sources such as fresh water from rivers and groundwater, treated and recycled water, and water conservation. Needless to say, alternatives are not always available and achievable desalination costs today range from $0.5-1 per cubic meter. To put this into perspective, bottled water at $1/liter corresponds to $3,785 per cubic meter.

Desalination projects can be found in about 150 countries, with many more being planned or under construction. Today’s largest users are in the Middle East – for example, Saudi Arabia derives 50% of its municipal water from desalination and Qatar’s much smaller fresh water supply is entirely from desalination. Currently under construction in Kuwait is a power plant-desalination combined facility that will produce 1.5 GWe and 486,000 cubic meters of fresh water a day. It is scheduled for completion in 2016.

image

As world population increases along with demand for clean water desalination will become an increasingly important part of our water supply in the 21st century. We will not run out of water but we will pay more for receiving it in potable form.