Returning to an Important Subject: the Vulnerability of the U.S. Electrical Grid

I’ve just had an amazing experience – I listened for about an hour to an online advertisement for an investment newsletter. You may reasonably ask why would any compos mentis individual devote an hour of their life to an advertisement for a service that he was unlikely to sign up for? My answer is simple – the ad addresses an important issue that I have touched upon in earlier blog posts, and in accurate terms once you sift the wheat from the chaff of a much too long presentation. It also presents a worst case scenario to get your attention, a common advertising technique, but it also presents information on what I consider a significant national security risk – the vulnerability of our national electrical grid system to natural or malevolent events. The ad, in its infuriating stretched-out discussion, addresses this vulnerability from four sources – sabotage, solar flares, cyber attacks, and military attacks. The ad’s discussion includes references to federal government and NARUC (National Aassociation of Regulatory Utility Commissioners) reports that address Black Sky Day possibilities and which are easily accessed. Black Sky Days are defined as “extraordinary and hazardous catastrophes utterly unlike the blue sky days during which utilities usually operate.”

My concern about the grid vulnerability issue goes back about thirty years and has only grown with time. I truly believe we are a highly vulnerable society and are not yet paying enough attention to our vulnerabilities. I hope I am wrong.

In any event, I present the link to the ad below (I wish it had an Executive Summary) and to my two previous blog posts that discuss the vulnerability issue. We need more attention to these perhaps unlikely events but ones with potentially massive consequences.

1. The Black Sky Days Event Is “Imminent” – The Oxford Club
http://pro.oxfordclub.com/DDSKY3959PESDBNETTTSOXFJVIUPS4/PORER800/?h=true

2. The Vulnerability of Our Electric Utility System to Cyber Attacks

The Vulnerability of Our Electric Utility System to Cyber Attacks

3. Vulnerabilities of U.S. Infrastructure: We Need To Pay More Attention

Vulnerabilities of U.S. Infrastructure: We Need To Pay More Attention

The Exciting Changes Taking Place in Scotland’s Energy System

I returned recently from a two-week visit to Scotland, my wife’s home country. She and I are now the owners of a flat (apartment in Americanese) in East Kilbride, near Glasgow, that makes visiting with her family much easier.  Another exciting feature is that on all clear days (it happens occasionally in Scotland) we can see, from the flat’s bedroom windows, wind turbines spinning in the nearby Whitelee wind farm, currently the largest operating onshore wind farm in Europe (just under 600MWp). The wind farm is several miles away from the flat.

image

The purpose of this blog post is to discuss the exciting developments taking place in Scotland’s energy system, where the stated national goal is to go 100% renewables for electricity supply by 2020. Achieving this goal, whether in 2020 or sometime in the decade afterwards, will rely heavily on Scotland’s large wind resources, both onshore and offshore. As a sparsely populated country (total population is 5.4 million ) with significant renewable energy resources, Scotland “..is in a unique position to demonstrate how the transition to a low-carbon, widely distributed energy economy may be undertaken.”

What is Scotland’s current energy situation?  In Late November 2014 it was announced by the independent trade body Scottish Renewables that “.. with numbers from the first half of 2014, ..renewable energy was Scotland’s largest source of (electrical) power.” Specifically, for the first half of 2014, renewables provided 10.3 TWh of electrical energy, while nuclear power, previously Scotland’s main sources of electricity, provided 7.8 TWh. Coal was third with 5.6 TWh with natural gas at 1.4 TWh.

This increase in renewable generation continues the trend shown in the following chart:

image

Installed renewable capacity increased to 7,112 MW by the end of the 3d quarter of 2014 – mostly onshore wind and hydro – with another 441 MW of wind capacity (onshore) in construction, 7,720 MW (onshore and offshore) awaiting construction, and 3,765 MW (onshore) in planning. Small amounts of other renewable generation (biomass, landfill gas, hydro) are also in the pipeline.

image

With wind power already generating enough electricity to supply more than total Scottish household demand, Niall Stuart, Chief Executive of Scottish Renewables, sees much more potential in the future: “Offshore wind and marine energy (wave, tidal, ocean current) are still in the early stages of development but could make a big contribution to our future energy needs if they get the right support from government. That support includes the delivery of grid connections to the islands, home to the UK’s very best wind, wave and tidal sites.”

Scottish enthusiasm for renewables was bolstered by a report issued  by WWF Scotland in January (‘Pathways to Power: Scotland’s route to clean, renewable, secure electricity by 2030’) which concluded that, with respect to electricity, a fossil fuel-free Scotland is not only technically feasible but “..could prove a less costly and safer option than pursuing fossil fuel- based development..” that assumes carbon capture and sequestration (CCS) technology will be operating at scale in 2030. With regard to the Scottish government’s stated goal of decarbonizing the electrical sector by 2030, Paul Gardner of DNV GL, lead author of the report, has stated that “There is no technical reason requiring conventional fossil and nuclear generation in Scotland.”  In addition, Gina Hanrahan, climate and energy officer at WWF Scotland, explained that “The report shows that not only is a renewable, fossil fuel-free electricity system perfectly feasible in Scotland by 2030, it’s actually the safe bet. Pursuing this pathway would allow Scotland to maintain and build on its position as the UK and Europe’s renewable powerhouse, cut climate emissions (electricity generation accounts for one-third of Scotland’s emissions) and continue to reap the jobs and investment opportunities offered by Scotland’s abundant renewable resources.”

What is Scotland’s natural resource base for renewables?  In addition to its existing installed capacity of hydropower (1.3 GW), it is estimated that wind, wave and tide make up more than 80% of Scotland’s  renewable energy potential – 36.5GW/wind (onshore and offshore), 7.5 GW/tidal power, 14 GW/wave power. This total, almost 60 GW, is considerable greater than Scotland’s existing electrical generating capacity from all fuel sources of 10.3 GW.

It is interesting to note that Scotland also has significant fossil fuel resources, including 62.4% of the European Union’s proven oil reserves, 12.5% of the EU’s proven natural gas reserves, and 69% of UK coal reserves.  Nonetheless, the Scottish Government, as discussed above, has set ambitious goals for renewable energy production. This is likely driven by concern for global climate change and the economic potential for Scotland as a major source of renewable energy.

 

 

Documenting the 1970s – Part 1 of 2

A theme that has emerged in some of my recent blog posts is that many useful thoughts on renewable energy policy were formulated in the late 1970s, but that the U.S. was slow to pick up on the opportunities (e.g., see ‘A Personal View’). In the course of reviewing materials long-stored in my basement files I have found quite a few documents that were published at that time that support this theme, and I will use this blog to make sure that some of them are easily available.

The first of two documents I will post is the June 20, 1979 message sent by President Carter to the U.S. Congress that outlined “..the major elements of a national solar strategy.” It was based on the DPR (Domestic Policy Review of Solar Energy) that had been delivered to the President six months earlier. It shows that President Carter understood the importance of committing “..to a society based largely on renewable sources of energy” way back when. He deserves great credit for this foresight, which unfortunately was not shared by his successor in the White House.

image

The attached document is quite long, for which I apologize, but well worth reading. It demonstrates that U.S. thinking about energy was quite advanced more than three decades ago, and that it is only in recent years, under President Obama, that we have started to seriously implement those long-ago ideas and proposed policies. It is a shame and national disgrace that it has taken so long to do this, and dispiriting to comprehend what could have been accomplished but wasn’t. However, as we say, better late than never.

Further early discussion of these ideas will be presented in the follow-up post ‘Documenting the 1970s – Part 2 of 2′.

……………………………………,,,,,

FOR IMMEDIATE RELEASE

June 20, 1979

Office of the White House Press Secretary
THE WHITE HOUSE
TO THE CONGRESS OF THE UNITED STATES:
On Sun Day, May 3, 1978 we began a national mobilization in our country toward the time when our major source~ of
energy will be derived from the sun. On that day, I committed our Nation and our government to developing an aggressive
policy to harness solar and renewable sources of energy. I ordered a major government-wide review to determine how
best to marshal the tools of the government to hasten the day when solar and renewable sources of energy become our
primary energy resources. As a result of that study, we are now able to set an ambitious goal for the use of solar energy
and to make a long term commitment to a society based largely on renewable sources of energy. In this Message I will outline
the major elements of a national solar strategy. It relies not only on the Federal government, both Executive and Congress,
but also on State and local governments, and on private industry, entrepreneurs, and inventors who have already given us significant progress in the availability of solar technologies. Ultimately, this strategy depends on the strength of the American people’s commitment to finding and using substitutes for our diminishing supplies of traditional fossil fuels.

Events of the last year — the more than 30% increase in the price of oil we import and the supply shortage caused
by the interruption of oil production in Iran — have made the task of developing a national solar strategy all the more
urgent, and all the more imperative. More than ever before, we can see clearly the dangers of continued excessive reliance on oil for our long-term future security. Our energy problem demands that we act forcefully to diversify our energy supplies, to make maximum use of the resources we have, and to develop alternatives to conventional fuels. Past governmental policies to control the prices of oil and natural gas at levels below their real market value have impeded development and use of solar and renewable resource alternatives. Both price controls and direct subsidies that the government has provided to various existing energy technologies have made it much more difficult for solar and renewable resource technologies to compete. In April of this year I announced my decision to begin the process of decontrolling domestic oil prices. Last November, I signed into law the Natural Gas Policy Act which
will bring the price of that premium fuel to its true market level over the next five years. Together, these steps will
provide much-needed incentives to encourage maximum exploration and production of our domestic resources. They provide
strong incentives to curb waste of our precious energy resources. Equally important, these steps will help solar and renewable resource technologies compete as the prices of oil and natural gas begin to reflect their real market value.
Consumers will see more clearly the benerits of investing in energy systems for which fuel costs will not escalate each year. Industry can plan and invest with more certainty, knowing the market terms under which their products will compete.

We must further strengthen America’s commitment to conservation. We must learn to use energy more effiCiently and productively in our homes, our transportation systems and our industries. Sound conservation practices go hand in hand with a strong solar and renewable resource policy. For example, a well-designed and well-insulated home is better able to make use of solar power effectively than one which is energy inefficient. We must also find better ways to burn and use coal — a fossil fuel which we have in abundance. Coal must and will be a key part of a successful transition away from oil. We must and will do more to utilize that resource. Solar energy and an increased use of coal will help in the near and mid-term to accelerate our transition away from crude oil.

But it is clear that in the years ahead we must increasingly rely on those sources of power which are renewable. The
transition to widespread use of solar energy has already begun. Our task is to speed it along. True energy security —
in both price and supply — can come only from the development of solar and renewable technologies. In addition to fundamental
security, solar and renewable sources of energy provide numerous social and environmental benefits. Energy from the sun is clean and safe. It will not pollute the air we breathe or the water we drink. It does not run the risk of an accident which may threaten the health or life of our citizens. There are no toxic wastes to cause disposal problems. Increased use of solar and renewable sources of energy is an important hedge against inflation in the long run. Unlike the costs of depletable resources, which rise exponentially as reserves are consumed, the cost of power from the sun will go down as we develop better and cheaper ways of applying it to everyday
needs. For everyone in our society — especially our low-income or fixed-income families — solar energy provides an important way to avoid rising fuel costs. No foreign cartel can set the price of sun power; no one can embargo it. Every solar collector in this country, every investment in using wind or biomass energy, every advance in making electricity directly from the sun decreases our reliance on uncertain sources of imported oil, bolsters our international trade position, and enhances the security of our Nation.

Solar energy can put hundreds of thousands of Americans to work. Because solar applications tend to be dispersed and decentralized, jobs created will be spread fairly evenly around the Nation. Job potentials span the ranges of our employment spectrum, from relatively unskilled labor to advanced engineers, from plumbers and metal workers to architects and contractors, from scientists and inventors to factory workers, from the small businessman to the large industrialist. Every investment in solar and renewable energy systems keeps American dollars working for us here at home, creating new jobs and opportunities, rather than sending precious funds to a foreign cartel.

Increased reliance on solar and renewable technologies can also increase the amount of control each one of us as individuals and each of our local communities has over our energy supplies. Instead of relying on large, centralized energy installations, many solar and renewable technologies are smaller and manageable by the homeowner, the farmer, or the individual factory or plant. By their very nature, renewable technologies are less likely to engage the kind of tension and conflict we have seen in other energy areas, such as the problems
posed by siting a very large energy facility, or trading off between surface uses of land and development of the energy minerals that might lie below that land.

Finally, solar and renewable technologies provide great international opportunities, both in foreign trade, and in the ability to work with developing nations to permit them to harness their own, indigenous resources rather than become dependent on fuels imported from other nations.
It is a mistake to think of solar energy as exotic or unconventional. Much of the technology for applying the sun’s power to everyday tasks has been in use for hundreds of years. There were windmills on our great plains long before there were high tension wires. There were factories in New England using waterpower long before the internal combustion engine was invented. In Florida, before World War II, there were more than 60,000 homes and buildings using solar hot water heaters. The Native Americans who built the great cliff dwellings of the West understood and applied solar heating principles that we have neglected in recent years, but which are available for us to use today.

These traditional and benign sources of energy fell into disuse because of a brief glut of cheap crude oil. These years are over. That inescapable fact is not a cause for despondency or a threat to our standard of living. On the contrary, it presents us with an opportunity to improve the quality of our lives, add dynamism to our economy and clean up our environment. We can meet this challenge by applying the time-tested technologies of solar power, and by developing and deploying new devices to harness the rays of the sun.

The government-wide survey I commissioned concluded that many solar technologies are available and economical today. These are here and now technologies ready for use in our homes, schools, factories, and farms. Solar hot water heating is competitive economically today against electric power in virtually every region of the country. Application of passive design principles that take into account energy efficiency
and make maximum use of the direct power of the sun in the intrinsic design of the structure is both good economics and good common sense.

Burning of wood, some uses of biomass for electricity generation, and low head hydropower have repeatedly been shown to be cost competitive.

Numerous other solar and renewable resources applications are close to economic competitiveness, among them solar space heating, solar industrial process heat, wind-generated electricity, many biomass conversion systems, and some photovoltaic applications. We have a great potential and a great opportunity to expand dramatically the contribution of solar energy between now and the end of this century. I am today establishing for our country an ambitious and very important goal for solar and renewable sources of energy. It is a challenge to our country and to our ingenuity. We should commit ourselves to a national goal of meeting one fifth – 20% – of our energy needs with solar and renewable resources by the end of this century. This goal sets a high standard against which we can collectively measure our progress
in reducing our dependence on oil imports and securing our country’s energy future. It will require that all of us examine carefully the potential solar and renewable technologies hold for our country and invest in these systems wherever we can.

In setting this goal, we must all recognize that the Federal government cannot achieve it alone. Nor is the Federal budget the only tool that should be considered in determining the courses we set to reach this goal. The extent to which solar and renewable technologies become more competitive will depend upon the cost of existing sources of energy, especially oil and natural gas. The degree to which existing solar technologies achieve widespread use in the near term will be as much if not more a function of the commitment on the part of energy users in this country to consider these technologies as it will be a function of the incentives the government is able to provide.

State and local governments must make an all-out effort to promote the use of solar and renewable resources if the
barriers now found at those levels are to be overcome. Zoning ordinances, laws governing access to the sun, housing codes,
and state public utility commission policies are not Federal responsibilities. Although the Federal government should
provide leadership, whether or not these tools are used to hinder or to help solar and renewable energy use Ultimately
depends upon decisions by each city, county and state. The potential for success in each of these areas is great; the
responsibility is likewise. I call on our Governors, our Mayors, and our county officials to join with me in helping
to make our goal a reality.

American industry must also be willing to make investments of its own if we are to reach our solar goal. We are setting
a goal for which industry can plan. We are providing strong and certain incentives that it can count on. Industry, in
turn, must accelerate and expand its research, development, demonstration, and promotional activities. The manufacturing,
construction, financing, marketing, and service skills of American business and labor are essential. Banks and financial
institutions will need to examine and strengthen their lending policies to assure that solar technologies are offered a fair
chance in the marketplace. Universities and the academic community must mobilize to find ways of bringing those solar
and renewable technologies that are still not ready for commercial introduction closer to the marketplace. Small
businesses and family farmers also have opportunities for significant use of solar and renewable resources. They, too,
must join in this effort.

Finally, each one of us in our daily lives needs to examine our own uses of energy and to learn how we can make solar
and renewable resources meet our own needs. What kind of house we buy, or whether we are willing to work in our own communities to accelerate the use of solar energy, will be essential in determining whether we reach our goal.

The Federal government also has a responsibility in providing incentives, information, and the impetus for meeting our 20%
solar goal by the year 2000. Almost every agency of the Federal government has responsibilities which touch in one way or another on solar energy. Government agencies helped finance over one million U.S. homes in 1978. By their lending policies and their willingness to assist solar investments, these agencies have significant leverage. The Tennessee Valley Authority is the Nation’s largest utility and producer of power. It has a far-reaching opportunity to become a solar showcase — to set an example for all utilities, whether public or privately owned, of how to accelerate the use of solar technologies. The Department of Defense (DOD) is a major consumer of energy and a major provider of housing. A multitude of opportunities exist for DOD to demonstrate the use of solar.

The Agency for International Development (AID) works full time in helping other countries to meet their essential needs, including energy. Solar and renewable resources hold significant potential for these countries and, through AID, we can assist in promoting the worldwide application
of these technologies.

The Department of Energy has a particularly significant responsibility in aiding the development and encouraging the use of solar energy technologies, in providing back-up information and training for users of solar, and, generally, in directing our government-funded research and development program to ensure that future solar and renewable technologies are given the resources and institutional support that they need.

As a government-wide study, the Domestic Policy Review of Solar Energy has provided a unique opportunity to draw together the disparate functions of government and determine how best to marshal all of the government’s tools to accelerate the use of solar and renewable resources. As a result of that study, the set of programs and funding recommendations that I have already made and am adding to today will provide more than $1 billion for solar energy in FY 1980, with a sustained Federal commitment to solar energy in the years beyond. The FY 1980 budget will be the highest ever recommended by any President for solar energy. It is a significant milestone for our country. This $1 billion of Federal expenditures — divided between incentives for current use of solar and renewable resources such as tax credits, loans and grants, support activities to develop standards, model building codes, and information programs, and longer term research and development — launches our Nation well on the way toward our solar goal. It is a commitment we will sustain in the years ahead.

I am today proposing the establishment of a national Solar Bank as a government corporation to be located within the Department of Housing and Urban Development (HUD). It will provide a major impetus toward use of today’s solar technologies by increasing the availability of financing at reasonable terms for solar investments in residential and commercial buildings. The Solar Bank will be funded at $100 million annually out of the Energy Security Trust Fund from revenues generated by the windfall profits tax. The Bank will be authorized to provide interest subsidies for home improvement loans and mortgages for residential and commercial buildings. It will pay up front subsidies to banks and other lending institutions Which, in turn, will offer loans and mortgages for solar investments at interest rates below the prevailing market rate. Ceilings on the amount of the loan or portion of a loan which can be subsidized will be set.

The Solar Bank will be governed by a Board of Directors including the Secretary of HUD, the Secretary of Energy, and the Secretary of the Treasury. The Board of Directors will be empowered to set the specific level of interest subsidy at rates which will best serve the purposes of accelerating the use of solar systems in residential and commercial buildings. Standards of eligibility for systems receiving Solar Bank
assistance will be set by the Secretary of HUD in consultation with the Secretary of Energy. The Solar Bank I have proposed is similar in many respects to that introduced by Congressman Stephen Neal of North Carolina. A companion bill has been introduced in the Senate by Senator Robert Morgan of North Carolina. To them. and to the co-sponsors of this legislation, we owe our gratitude for the hard work and sound conceptual thinking that has-been done on how a Solar Bank should be designed. The Solar Bank will complement the residential and commercial tax credits that I originally proposed in April 1977 and that were signed into law with the National Energy Act last November.

To provide full and effective coverage for all solar and renewable resource technologies which can be used in residential and commercial buildings, I have recently proposed two additional tax credits, to be funded out of the Energy Security Trust Fund. I am directing the Department of the Treasury to send to the Congress legislation which will provide a 20% tax credit up to a total of $2,000 for passive
solar systems in new homes. Credits will also be proposed for passive solar in commercial buildings. Passive solar applications are competitive today, but we need to provide incentives to owners, builders, architects, and contractors to ensure early and widespread use.

I am also directing the Treasury to prepare and transmit
legislation to provide a tax credit for purchasers of airtight
woodburning stoves for use in principal residences. This
credit would equal 15% of the cost of the stove, and will
be available through December 1982. There is a great potential
to expand significantly the use of wood for home heating. It
can help lower residential fuel bills, particularly as oil
and natural gas prices increase.

With these levels of assistance, hot water heating can
be made fully competitive with electricity. In many instances,
complete passive solar home designs, including solar heating
and cooling, will be economically attractive alternatives.

A strong Federal program to provide accurate and up-to-
date solar information to homeowners, builders, architects
and contractors will be coupled with these financial incentives. The Department of Energy has established a National Solar User Information Program to collect, evaluate and publish
information on the performance of solar systems throughout
the country. Expanding the government’s information dissemina-
tion systems through seminars, technical journals, state energy
offices, and the Solar Energy Research Institute will be a
major thrust of DOE’s program in 1980. The four Regional
Solar Energy Centers will become fully operational in 1980,
providing information to the general public and to groups
such as builders, contractors, and architects who will play
key roles in the acceleration of solar technologies.
To be fully effective, however, these incentives must
be combined with a determined effort by the architects,
engineers, and builders who design and construct our homes
and offices, schools, hotels, restaurants, and other buildings
we live and work in. I am calling upon thE deans of our
schools of architecture and engineering to do their part by
making the teaching of solar energy principles an essential
part or their curricula. The young men and women being
trained today must learn to regard the solar energy and overall
energy efficiency of the buildings they design as no less
important than their structural integrity. I call as well
on America’s builders to build and market homes which offer
the buyer freedom from escalating utility bills.

In the end, it will be consumers of this country who
will make the purchasing decisions that will dictate the
future of this industry_ They must have confidence in
the industry and in the products which it produces before
they will be willing to make necessary investments. To
this end. both industry and government must be ever vigilant
to assure that consumers are well protected from fraud and
abuse.
* * * * *
Significant opportunities for use of existing solar
technologies are also available in the agricultural and
industrial sectors of our economy. Industrial process heat
can be generated using solar technologies. Critical agricultural activities — fueling tractors, running irriga:ion pumps and drying crops — provide numerous opportunities for the use
of solar and other renewable resources. Biomass, gasohol, wind energy, low head hydro, and various direct solar technologies hold significant promise in the agricultural and industrial sectors. I will soon be
forwarding legislation to the Congress which will:
Provide a 25 investment tax credit for agricultural and industrial process heat uses of solar energy. This is a 15% addition to the existing investment tax credit and it will remain available through 1989. This responds directly
to the concern expressed in the Domestic Policy
Review that the tax credit currently provided in
the National Eoergy Act is set at too low a level
and expires too early to provide needed incentives.
These uses now account for about 25% of our energy
demand. Substitution of solar and it her renewable
resources for a portion of this energy would
significantly reduce our dependence on foreign oil.
Permanently exempt gasohol from the Federal gasoline
excise tax. More and more Americans are learning
that a gasohol blend of 90 gasoline and 10 alcohol
which is made from various agricultural products
or wastes — is an efficient octane-boosting fuel
for automobiles and other gasoline engines.
The existing tax incentives of the National Energy Act
will continue to stimulate the uses of these teohnologies
in the industrial and agricultural sectors.
The Department of Agriculture will have a significant
responsibility for informing farmers and other agricultural
users of energy about how solar and other renewable sources
can begin to help meet their needs. The Farmers Home Adminis-
tration and other agencies within the Agriculture Department
will continue to provide financial and technical assistance
to farmers in using solar and other renewable technologies.
The TVA is demonstrating what can be done by utilities
in helping private industries, farmers, and residential
customers apply existing solar technologies. The goal of
the TVA’s “Solar Memphis” program is to install 1,000 solar
water heaters this year by offering long-term, low-interest
loans, by inspecting solar installations, and by backing
manufacturers’ warranties. In addition, the TVA’s 1.75 million
square foot passive solar office complex in Chattanooga, Tennessee will be designed to be completely energy self-sufficient and will be a model for the nation in the use of renewable technologies in office buildings.

The Small Business Administration is now operating a
solar loan program for small manufacturers and purchasers
of solar technologies. Next year, the SBA aims to triple
the amount of funds available to small businesses under this
program over the amount originally appropriated. We will
also marshal the efforts of agencies such as the Economic
Development Administration to include solar and other renewable
resources within their assistance programs.
These activities, along with the basic information
dissemination programs of the Department of Energy, will help
increase the use of solar and other renewable resource technologies in residential, commercial, agricultural, and industrial buildings.

Finally, we will strive to increase use of solar energy
by the Federal government itself. An estimated 350 solar
systems will be placed in government facilities and buildings
over the next fifteen months. Energy audits of all large
federal buildings will be completed in 1979. DOE will con-
tinue to develop guidelines which take into account the
lifetime energy costs of various systems. The Department
of Defense, which accounts for about 72% of all government-
owned buildings, 1s playing a major role in the federal solar
buildings program. To date, DOD has over 100 solar projects
in various stages of completion, ranging in size from solar
hot water heaters in residences to solar heating and air
conditioning of Naval, Air Force and Army base facilities.
When all of the presently planned solar projeots are complete,
DOD estimates that they will be providing more than 20 billion
Btu’s of energy. The Federal government must set an example,
and I call upon the states to do likewise.
* * * *
The Domestic Policy Review recommended several important
changes in the direction and nature of the Federal research
and development program for future solar and renewable resource
technologies. It found that solar demonstration programs
for active hot water systems and high-cost centralized solar
electric technologies had been overemphasized at the expense
of those systems which hold wider potential to displace the
use of oil and natural gas.

As a result of the Domestic Policy Review, the FY 1980
budget for DOE’s research and development program for solar
and renewable energy sources was redirected toward technologies
such as photovoltaics, biomass, wind energy, and systems for
generation of process heat. To respond to these new priorities,
over $130 million in increased funding was provided in the
R&D program, an increase of 40% over FY 1979 levels.

While solar heating and cooling units are already being
used to meet the energy requirements of buildings throughout
the country, the DOE is supporting continued advances in these
products, by providing funds to industry, small business,
Federal laboratories, and the research community to reduce
the cost of solar systems and to improve performance. Improved
system design, analysis, and system-integration activities
are being carried out for active heating and cooling systems,
passive systems, and agricultural and industrial process
heating systems. The program also supports product improve-
ments for such key components as solar collectors, energy
storage units, and controls.
Photovoltaics, which permit the direct conversion of
sunlight into electriCity, hold significant promise as a solar
technology for the future. Research and development efforts
are directed at reducing the cost of photovoltaic systems.
In addition, new systems which produce hydrogen through
an electrochemical reaction can be used to produce electricity.
There is no question about our technical ability to use photo-
voltaics to generate electricity. These systems are already
used extensively to meet remote energy needs in our space
program. The main issue now is how to reduce the costs of
photovoltaics for grid-related applications such as providing
electricity to residential buildings over the next five to
ten years. The photovoltaic program involves all aspects
of research and development, from hardware components to
materials, marketing and distribution systems. The Federal
government has already made commitments to purchase $30 million
of photovoltaic systems at a specified cost per watt as a
means of stimulating private efforts to reduce the cost of
this technology.

DOE’s research and development program has also emphasized
wind energy. Our objective is the development of wind systems
which will compete cost-effectively with conventional technologies. There will also be efforts to develop wind technologies for small units suitable for farm and rural use and for large utility units.

Biomass conversion holds significant promise as a major
source of renewable energy over the coming decades. Liquid
and gaseous fuels produced from organic wastes and crops can
displace oil and natural gas both as direct combustion fuels
and as chemical feedstocks. Some biomass fuels, such as gasohol, are in use today. Others, such as liquid fuels from organic wastes, require additional research and development.

In the coming fiscal year, DOE will complete construction
of the solar power tower in Barstow, California. Such systems
could potentially displace some oil- and gas-fired generators.
The DOE solar thermal program is also concentrating on reducing
to near commercial levels the costs of distributed receiver
systems by 1983 and similarly reducing the future costs of
central receiver systems. This program supports R&D efforts
in advanced space heating and cooling, photovoltaic concen-
tration, and high temperature industrial heat applications.

The oceans are another potential source of solar energy.
We will pursue research and development efforts directed toward
ocean thermal energy conversion, and other concepts such as
the use of salinity gradients, waves, and ocean currents.
DOE is working with the National Aeronautics and Space
Administration to evaluate the concept of a solar power
satellite system (SPS) which would capture solar energy in
space for transmission to earth. A determination will be
made in January 1981 on whether this system should proceed
to the exploratory research stage.

DOE will undertake intensified efforts involving solar
energy storage and basic solar energy research. In the basic
research area, emphasis is being placed on the development
of new materials to better use or convert the sun’s energy,
solar photochemistry (including the possibility of using
electrochemical cells to convert the energy of sunlight into
electricity and/or fuels) and research on artificial photo-
synthesis.

In Fiscal Year 1980 we will begin building a new 300-acre solar research facility for the Solar Energy Research Institute at Golden, Colorado. This institute, along with
four regional solar centers established across the country,
will help provide a focus for research and development
activities and will become information centers for individuals
and firms who market or install solar equipment.

In addition to DOE’s research and development activities,
several other agencies will continue to support commercial
introduction of solar technologies as they become available.
AID, TVA and the Department of Agriculture now have and will
continue to have significant responsibilities in the demon-
stration of new solar and renewable resource systems.

The Domestic Policy Review identified numerous specific
program suggestions, many of which I believe can and should
be implemented. Over the course of the coming weeks, I will
be issuing a series of detailed directives to the appropriate
agencies to implement or consider recommendations in
accordance with my instrUctions.

Some of these suggestions involve detailed budget issues
which should be taken up in our normal budget planning
process. In order to provide much-needed flexibility to DOE
to respond to these — and other — suggestions, I am directing
the Office of Management and Budget to provide an additional
$100 million to DOE for use on solar programs beyond that
which had previously been identified for the FY 1981 base
program.

…………..

An essential element of a successful national solar
strategy must be a clear central means of coordinating the
many programs administered by the numerous agencies of
government which have a role in accelerating the development
and use of these energy sources. I am today directing that
the Secretary of Energy establish a permanent, standing
Subcommittee of the Energy Coordinating Committee (ECC) to
monitor and direct the implementation of our national solar
program. The ECC membership includes the major agencies
which have responsibilities for solar and renewable resource
use. By using this existing mechanism, but strengthening
its focus on solar and renewable activities, we can provide
an immediate and direct means to coordinate the Federal solar
effort. The Subcommittee will report on a regular basis to
the ECC, and through it directly to me, on the progress of
our many and varied solar activities. The Subcommittee will
be able to identify quickly any problems that arise and the
ECC will provide a forum to resolve them. Since the member-
ship of the ECC includes key agencies of the Executive Office
of the President, especially the Office of Management and
Budget, the Special Assistant to the President for Consumer
Affairs, the Council on Environmental Quality, and the
Domestic Policy Staff, direct and easy access to my staff
and Members of the Cabinet is assured.

The Standing Subcommittee of the ECC has an extremely
important responsibility. I am expecting it to provide
the leadership and the day-to-day coordinating function
which will be essential as we strive to meet our national
solar goal.
…………

We are today taking an historic step. We are making a
commitment to as important a goal as we can set for our
Nation — the provision of 20% of our energy needs from solar
and renewable sources of energy by the year 2000.

We are launching a major program — one which requires
and has received a significant commitment from the Federal
government to accelerate the development and use of solar
technologies.

We are marshalling the best that the agencies of government
can provide and asking for the commitment of each of them,
in their diverse and numerous functions, to assist our country
in meeting our solar goal.

The stakes for which we are playing are very high. When
we speak of energy security, we are in fact talking-about
how we can assure the future economic and military security
of our country — how we can maintain the liberties and freedoms which make our Nation great.

In developing and implementing a national solar strategy
we are taking yet another critical step toward a future which
will not be plagued by the kinds of energy problems we are
now experiencing, and which will increase the prospects of
avoiding worse difficulties.

We have set a challenge for ourselves. I have set a
challenge for my Presidency. It will require the best that
American ingenuity can offer, and all the determination which
our society can muster. Although government will lead, inspire,
and encourage, our goal can be achieved only if each American
citizen, each business, and each community takes our solar
goal to heart.

Whether our energy future will be bright — with the
power of the sun — or whether it will be dim, as our fossil
resources decline, is the choice that is now before us. We
must take the path I have outlined today.~
JIMMY CARTER
THE WHITE HOUSE,
June 20, 1979.

Thoughts On U.S. Energy Policy – Updated

In October 2008, just prior to the U.S. presidential election, I drafted a piece entitled ‘Thoughts on an Energy Policy for the New Aministration’. It was published about a month later and republished as my first blog post in May 2013. I said at that time “What I find interesting about this piece is that I could have written it today and not changed too many words, an indication that our country is still struggling to define an energy policy.” This post is my attempt to look back at what I said in 2008 and 2013 and see if my perspectives and views have changed.

In that piece I started off by listing 14 items that I labeled as ‘facts’ on which most can agree. These ‘facts’ are reproduced below, followed by my comments on what may have changed since 2008.

1. People do not value energy, they value the services it makes possible – heating, cooling, transportation, etc. It is in society’s interest to provide these services with the least energy possible, to minimize adverse economic, environmental and national security impacts.

2. Energy has always been critical to human activities, but what differentiates modern societies is the energy required to provide increasingly high levels of services.

3. Population and per capita consumption increases will drive increasing global energy demand in the 21st century. While not preordained, this increase will be large even if others do not achieve U.S. per capita levels of consumption.

4. Electrification increased dramatically in the 20th century and will increase in the 21st century as well. The substitution of electricity for liquid transportation fuels will be a major driver of this continued electrification.

5. Transportation is the fastest growing global energy consumer, and today more than 90% of transportation is powered by petroleum-derived fuels.

6. Globally energy is not in short supply – e.g., the sun pours 6 million quads of radiation annually into our atmosphere (global energy use: 460 quads). There is considerable energy under our feet, in the form of hot water and rock heated by radioactive decay in the earth’s core. What is in short supply is inexpensive energy that people are willing to pay for.

7. Today’s world is powered largely by fossil fuels and this will continue well into the 21st century, given large reserves and devoted infrastructure.

8. Fossil fuel resources are finite and their use will eventually have to be restricted. Cost increases and volatility, already occurring, are likely to limit their use before resource restrictions become dominant.

9. Increasing geographic concentration of traditional fossil fuel supplies in other countries raises national security concerns.

10. The world’s energy infrastructure is highly vulnerable to natural disasters, terrorist attacks and other breakdopwns.

11. Energy imports, a major drain on U.S. financial resources, allow other countries to exert undue influence on U.S. foreign policy and freedom of action.

12. Fossil fuel combustion releases CO2 into the atmosphere (unless captured and sequestered) which mixes globally with a long atmospheric lifetime. Most climate scientists believe increasing CO2 concentrations alter earth’s energy balance with the sun, contributing to global warming.

13. Nuclear power, a non-CO2 emitting energy source, has significant future potential but its widespread deployment faces several critical issues: cost, plant safety, waste storage, and weapons non-proliferation.

14. Renewable energy (solar, wind, biomass, geothermal, ocean) has significant potential for replacing our current fossil fuel based energy system. The transition will take time but we must quickly get on this path.”

What has changed in my opinion are items 9, 11, and 12. The availability of large amounts of home-grown natural gas and oil at competitive prices via hydraulic fracturing (fracking) of shale deposits has turned the U.S. energy picture upside down. It may do that in other countries as well. Whereas the U.S. was importing over 50% of its oil just a few years ago, that fraction is now under 40% and the U.S. is within sight of becoming the largest oil producer in the world, ahead of Russia and Saudi Arabia. Whereas in recent years the U.S. was building port facilities for the import of LNG (liquified natural gas) these sites are being converted into LNG export facilities due to the glut of shale gas released via fracking and the large potential markets for U.S. gas in Europe and Asia (where prices are higher than in the U.S.).

The phenomena of global warming and climate change due to mankind’s combustion of carbon-rich fossil fuels are also becoming better understood, climate change deniers have become less and less visible, and the specific impacts of climate change on weather and water are being actively researched. An important change is the substitution of natural gas for coal in new and existing power plants, which has reduced the share of coal from 50% just a few years ago to less than 40% today. This has reduced U.S. demand for domestic coal, which is now increasingly being sold overseas.

The second part of the 2008 article was a set of 10 recommendations that are reproduced below:

1. Using the bully pulpit, educate the public about energy realities and implications for energy, economic and environmental security.

2. Work with Congress to establish energy efficiency as the cornerstone of national energy policy.

3. Work with Congress to provide an economic environment that supports investments in energy efficiency, including appropriate performance standards and incentives, and setting a long-term, steadily increasing, predictable price on carbon emissions (in coordination with other countries). This will unleash innovation and create new jobs.

4. Consider setting a floor under oil prices, to insure that energy investments are not undermined by falling prices, and using resulting revenues to address equity and other needs.

5. Work with Congress to find an acceptable answer to domestic radioactive waste storage, and with other nations to address nuclear power plant safety issues and establish an international regime for ensuring nonproliferation.

6. Establish a national policy for net metering, to remove barriers to widespread deployment of renewable energy systems.

7. Provide incentives to encourage manufacture and deployment of renewable energy systems that are sufficiently long for markets to develop adequately but are time limited with a non-disruptive phaseout.

8. Aggressively support establishment of a smart national electrical grid, to facilitate use of renewable electricity anywhere in the country and mitigate, with energy storage, the effects of intermittency.

9. Support an aggressive effort on carbon capture and sequestration, to ascertain its feasibility to allow continued use of our extensive coal resources.

10. Remove incentives for fossil fuels that are historical tax code legacies that slow the transition to a new, renewables-based, energy system.

I still support these recommendations, buttressed by the following observations:

– more public education on global warming and climate change has taken place in recent years, and a majority of Americans now accept that global warming is driven by human activities.

– there is a lot of lip service given to the need for increased energy efficiency, and President Obama’s agreement with the auto industry to increase Corporate Average Fuel Economy (CAFE) standards over the next decade is an important step forward. What is lacking, and slowing needed progress toward greater efficiency, is a clear policy statement from the U.S. Congress that identifies and supports energy efficiency as a national priority.

– with the shutting down of the Yucca Mountain long-term radioactive waste storage facility in Nevada, the Obama Administration is searching for alternatives but believes the country has time to come up with a better answer. This may be true, or may not, and only time will tell. It is not a uniquely American problem – other countries are struggling with this issue as well and most seem to favor deep geological storage. This is a problem we will definitely be handing down to our children and grandchildren,

– net metering as a national policy, as is true in several other developed countries, has gone nowhere in the six years since 2008. It is another example of a lack of Congressional leadership in establishing a forward-looking national energy policy.

– progress has been made on moving renewable energy into the energy mainstream, but we have a long way to go. NREL’s June 2012 report entitled ‘Renewable Electricity Futures Study’ made it clear that renewables could supply 80% of U.S. electricity by 2050 if we have the political will and make appropriate investments. The study puts to rest the argument used by the coal and other traditional energy industries that renewables can’t do the job. The public needs to understand that this canard is inaccurate and not in our country’s long term interests.

– the need for a national grid, and localized mini-grids (e.g., on military bases), has been recognized and appropriate investments are bring made to improve this situation. A national smart grid, together with energy storage, are needed to assure maximum utilization of variable clean energy sources such as wind and solar. Other renewable energy sources (geothermal, biomass, hydropower, ocean energy) can be operated as baseload or near base load capacity. And even intermittent wind and solar can supply large amounts of our electricity demand as long as we can transfer power via the national grid and use averaging of these resources over large geographical areas (if the wind isn’t blowing in X it probably is blowing in Y).

– the carbon capture and sequestration effort does not seem to be making much progress, at least as reported in the press. My blog post entitled ‘Carbon Capture and Sequestration: Is It a Viable Technology?’ discusses this issue in some detail.

– with respect to reducing long-standing and continuing subsidies for fossil fuel production, no progress has been made. Despite President Obama’s call for reducing or eliminating these subsidies the Congress has failed to act and is not likely to in the near-term future. This is a serious mistake as these industries are highly profitable and don’t need the subsidies which divert public funds from incentivizing clean energy technologies that are critical to the country’s and the world’s energy future.

– today’s electric utility sector is facing an existential threat that was not highly visible just a few years ago. This threat is to the utility sector’s 100 year old business model that is based on generation from large, centralized power plants distributing their energy via a radial transmission and distribution network. With the emergence of low-cost decentralized generating technologies such as photovoltaics (PV), these business models will have to change, which has happened in Germany and will eventually happen in the U.S. Keep tuned as this revolution unfolds.

As a final word I repeat what I have said in earlier posts: we need to put a long-term, steadily increasing price on carbon emissions that will unleash private sector innovation and generate revenues for investments in America’s future. This is a critical need if we are to successfully address climate change, create new U.S. jobs in the emerging clean energy industry, and set an example for the world.

Grids, Smart Grids and More Grids: What’s Coming

In an earlier blog post on energy storage I stated that there are two developments related to the widespread use of renewable energy that ‘I would fall on my sword for’, energy storage and smart grids. This post discusses the second of these in the context of large-scale smart grids and smaller minigrids. Both are critical to the future of renewable energy in both developed and developing countries.

Grids are collections of wires,switches,transformers,substations, and related equipment that enables the delivery of electrical energy from a generator to a consumer of that energy. A traditional grid structure today is shown below:

image

The first grid, for delivery of alternating current (AC) electricity, was put into operation in 1886. Electrical energy can be delivered as either AC or DC (direct current) electricity, but for over a century AC has been the preferred delivery mechanism. A more complete discussion of AC vs. DC is a good topic for a future blog post.

The traditional grid is a one-way distribution network that delivers power from large centralized generating stations to customers via a radial network of wires. Regional grids, when integrated, constitute a national grid, something the historically balkanized U.S. electric utility system is still trying to achieve. Transmission lines are long distance carriers of electrical energy transmitted at high voltages and low currents to minimize electrical losses due to heating in wires. This high voltage energy is then reduced via transformers to lower voltage, usually 120 or 240 volts, to supply local distribution networks that bring the energy to our homes and businesses. The U.S. Energy Information Administration estimates that national electricity transmission and distribution (T&D) losses average about 6% of the electricity that is transmitted and distributed in the United States each year.

While the traditional grid has brought the benefits of electricity to billions of people for many decades, its shortcomings have become more visible in recent years. The problem is its vulnerability to disruption by extreme weather events (only a small fraction of T&D wires are underground), physical attack and accidents leading to widespread power outages, cyber attack in today’s world of increasing dependence on information technologies, and even large solar storms that strike the earth occasionally and interact with the T&D system acting as giant antennas.

image

The utility industry has usually (but not always) resisted putting wires underground because of high costs, and increased effort is going into trimming trees that can fall on or otherwise disrupt power lines. Control of the grid has also been improved to minimize the possibility of disruption in one grid sector spreading to others, but this is a costly work in progress. What is looming as a major threat to the traditional grid is its increasing dependence on automated remote control via advanced computer/information technologies built into the grid system that are vulnerable to hacking and other malevolent interventions.

Grid systems with computer controls are referred to as smart grids. Through the gathering, communication, analysis, and application of analog or digital information on the behavior of suppliers and consumers, a smart grid can use automation “..to improve the efficiency, reliability, economics, and sustainability of the production and distribution of electricity.” The issue of cyber vulnerability has only begun to receive careful attention in recent years as the hacking phenomenon has surged and the ability to interrupt remote industrial activities via computer viruses such as Stuxnet have been demonstrated.

image

What can be done to protect against this vulnerability? Considerable effort is going into developing software that is resistant to hacking, but this is proving extremely difficult to achieve. As has become all too obvious, there are lots of talented hackers out there and some of them are supported by national governments. Nevertheless, this is a path that has to be pursued, and is becoming a priority in the training of new IT programmers and specialists.

Another approach is to move away from the historic centralized grid and move to a grid system where disturbances can be isolated (islanded) once detected and thus unable to affect other parts of the grid. This will require distributed generation sources that supply unaffected parts of the grid, and could be other centralized generators that can be tapped or local renewable energy sources (wind, solar) that are not in the disturbed grid sector.

Traditional grids are expensive, and extending these grids from urban to remote areas often can not be justified economically. This is particularly true in developing countries where most of the world’s 1.5 billion people without access to electricity reside. Improving access to modern energy services in rural areas is a major development priority, and there is increasing attention to decentralized generation and distribution through mini-grids. “A ‘mini-grid’ is an isolated, low-voltage distribution grid, providing electricity to a community – typically a village or very small town. It is normally supplied by one source of electricity, e.g. diesel generators, a solar PV installation, a micro-hydro station, etc., or a combination of the above.” It includes control capability, which means it can disconnect from a traditional grid and operate autonomously.

A recent workshop organized by the Africa-EU Renewable Energy Cooperation Programme (RECP), held in Tanzania in September 2013, focused on this rapidly emerging option – ‘Mini-Grids: Opportunities for Rural development in Africa’. The workshop background was described as follows: “Given Africa’s abundance of renewable energy resources, the widespread existence of isolated, expensive, highly-subsidized fossil-fuel based mini-grids on the continent, very low grid connection rates, the often low levels of electricity demand from households, the high costs associated with grid extension, the lack of reliable, centralized generation capacity and increasing levels of densification as a result of ongoing urbanization, renewable energy and hybrid-based mini-grids provide a practical, efficient energy access solution.” It should also be noted that the use of renewables can reduce fossil-fuel use, reduce carbon emissions, and create local jobs and economic development.

image

Another type of mini-grid is the micro-grid, a term used to describe mini-grids that deliver DC electricity to its consumers. Still another variation is the skinny-grid, which emphasizes the use of energy efficiency technologies to reduce consumer demand and thus allow the use of thinner and less expensive connecting wires between generators and end users.

I will conclude this blog post by discussing the role of smart grids in facilitating the integration of renewable energy into the grid. Renewable energy is now growing rapidly as a share of the global energy mix and this trend will continue as we move further into the 21st century. We are also learning that, despite the variable nature of solar and wind energy, by using the control features of increasingly sophisticated smart grids and the use of energy storage, this integration can be done safely and cost effectively with high levels of renewables penetration.

IRENA, the International Renewable Energy Agency headquartered in Abu Dhabi, has addressed this issue in a comprehensive November 2013 report entitled ‘Smart Grids and Renewables’. As stated in the Executive Summary: “This report is intended as a pragmatic user’s guide on how to make optimal use of smart grid technologies for the integration of renewables into the grid. …The report also provides a detailed review of smart grid technologies for renewables, including their costs, technical status, applicability and market maturity for various uses.” It acknowledges that “Much of what is known or discussed about smart grids and renewables in the literature is still at the conceptual/visionary stage..” but includes “..several case studies that involve actual, real-world installation and use of smart-grid technologies that enable renewables.” The report also points to needed policy and regulatory changes for successful renewables integration. It is a valuable and forward-looking document.