Returning to an Important Subject: the Vulnerability of the U.S. Electrical Grid

I’ve just had an amazing experience – I listened for about an hour to an online advertisement for an investment newsletter. You may reasonably ask why would any compos mentis individual devote an hour of their life to an advertisement for a service that he was unlikely to sign up for? My answer is simple – the ad addresses an important issue that I have touched upon in earlier blog posts, and in accurate terms once you sift the wheat from the chaff of a much too long presentation. It also presents a worst case scenario to get your attention, a common advertising technique, but it also presents information on what I consider a significant national security risk – the vulnerability of our national electrical grid system to natural or malevolent events. The ad, in its infuriating stretched-out discussion, addresses this vulnerability from four sources – sabotage, solar flares, cyber attacks, and military attacks. The ad’s discussion includes references to federal government and NARUC (National Aassociation of Regulatory Utility Commissioners) reports that address Black Sky Day possibilities and which are easily accessed. Black Sky Days are defined as “extraordinary and hazardous catastrophes utterly unlike the blue sky days during which utilities usually operate.”

My concern about the grid vulnerability issue goes back about thirty years and has only grown with time. I truly believe we are a highly vulnerable society and are not yet paying enough attention to our vulnerabilities. I hope I am wrong.

In any event, I present the link to the ad below (I wish it had an Executive Summary) and to my two previous blog posts that discuss the vulnerability issue. We need more attention to these perhaps unlikely events but ones with potentially massive consequences.

1. The Black Sky Days Event Is “Imminent” – The Oxford Club
http://pro.oxfordclub.com/DDSKY3959PESDBNETTTSOXFJVIUPS4/PORER800/?h=true

2. The Vulnerability of Our Electric Utility System to Cyber Attacks

The Vulnerability of Our Electric Utility System to Cyber Attacks

3. Vulnerabilities of U.S. Infrastructure: We Need To Pay More Attention

Vulnerabilities of U.S. Infrastructure: We Need To Pay More Attention

What Might the 2014 Elections Mean for U.S. Energy and Environmental Policy?

The simple answer is that at this point we don’t know. Lots of different paths are possible, depending on how Republicans interpret their enhanced power in the U.S. Congress, how the President approaches his final two years in office, and how Congressional Democrats react to their minority party role. Nevertheless, I will offer my current thoughts and speculations, subject of course to significant change as we proceed in Congress’ 2014 lame duck session and the start of a new Congress in January with Republicans in charge of both Houses for the first time in eight years.

One major consideration that dominates my thinking is that Republicans, facing inevitable demographic realities in future elections (older white people as a declining percentage of the voting population, more non-white voters/mostly Latino and Asian, and a growing number of young voters generally more progressive than their parents and grandparents), must demonstrate that they can govern effectively if they are to win national elections in the future. Remembering the Gingrich era in the 1990’s, when Republicans took over the Congress, it proved much easier to be in the minority and sling arrows than to govern effectively when finally in power. The modern House of Representatives, under John Boehner as Speaker, has proved to be one of the least effective in American history, but with control of both Houses in Republican hands after January, Boehner and McConnell (the presumed Majority Leaders in the new Congress) have the opportunity to do more than just oppose Obama Administration initiatives. What Boehner and McConnell want to do and are able to do will determine their places in history.

The issues as I see them are as follows: policy for fossil fuel supply – coal, oil, natural gas, fossil fuel exports, Keystone XL pipeline, global warming and climate change, support for clean energy, water issues. Each will be discussed briefly below.

– Fossil fuel supply: with Kentucky’s senior Senator setting the agenda for the Senate it is likely that anti-coal activists will be unsuccessful in accelerating the pace of closure of coal-fired power plants in the near future. These decisions, made on economic grounds by power plant operators, will be self-interested decisions based on the legislative environment they are facing. With Republicans in charge I anticipate every effort will be made to slow down or repeal the EPA’s proposed rules on carbon emissions. While there are Republicans who understand the need to replace coal combustion with natural gas and eventually with renewable energy, the political reality that they may be challenged in reelection primaries by climate change minimalizers or deniers tends to keep them in line with status-quo positions. Coal’s role in power generation in the U.S. is clearly diminishing, faster than most people probably anticipated just a few years ago, but low-cost coal exports to other countries are picking up. As the UK experienced several decades ago, closing coal mines and losing the associated jobs is difficult politics, as this year’s Senate election in Kentucky demonstrated. Keeping one’s job is priority #1 for most if not all people, and the political system needs to keep this firmly in mind. Balancing this against the needs of environmental protection is what we pay our politicians to do.

The issues with oil and natural gas largely relate to fracking and its associated environmental threats, and with their export to other countries. Both are critical issues that can no longer be avoided and require careful policy prescriptions that Republicans are now in a better place to affect. Fracking of oil and natural gas from extensive shale deposits has expanded rapidly in the U.S. in recent years, and the U.S. Is rapidly becoming the world’s #1 oil producer (when shale oil adds to our declining but still large traditional domestic oil production) and a major souce of natural gas supplies. As discussed in two previous posts on this blog web site, I see no way to stop fracking in the U.S. because of the large associated economic returns, and therefore we must regulate it carefully to avoid the real possibility of water supply contamination and minimize accidental releases of methane, a powerful global climate change gas. Republicans can have their cake and eat it too if they support this needed regulation, gaining brownie points for their environmentalism and still allow the fracking industry to proceed on their profitable path. Substituting fracking gas for coal in power generation is in most people’s interest, and while I would prefer to replace coal with wind, solar and other renewable generation sources, we are not in a position to do that yet. Nevertheless, the U.S. public largely understands the need for this inevitable transition and Republicans would be politically wise to take a long-range view on facilitating this transition. We shall see.

A related issue is what to do about U.S. producers who want to export oil and natural gas. Large and remunerative potential markets await in Europe and Asia but since the 1970’s it has been illegal for companies to export crude oil in all but a few circumstances. The goal of the 1970’s legislation was to conserve domestic oil reserves and discourage foreign imports, but in reality, the export ban did not help accomplish either objective.

The Natural Gas Act of 1938, as amended, requires that anyone who wants to import or export natural gas, including liquefied natural gas (LNG), from or to a foreign country must first obtain an authorization from the Department of Energy. This is less of a barrier than the ban on oil exports, but until recently the U.S. was anticipating importing LNG, not exporting it. The fracking revolution has changed all this, and LNG import terminals are now being constructed as export terminals.

An argument against such exports is less fossil fuel and potentially higher energy costs for U.S. consumers. Foreign policy as well as economic considerations come into this discussion as we try to loosen other country’s dependence on Russian and Middle East producers. I anticipate that export controls will be loosened on a bipartisan basis and the U.S. will emerge as a major energy exporter in the decades to come.

Approval of the Keystone XL Pipeline by the President will be a key issue in the upcoming lame duck session of Congress and may carry over to the new Congress in January. My own view, expressed in an earlier blog post, is that stopping construction of the pipeline will not slow Canadian development of its tar sands oil resources and that I’d rather have the oil coming to the U.S. rather than going elsewhere. I also believe that transport of oil by pipeline is safer than transport by rail car, the obvious and unstoppable alternative. With regard to this issue, which many environmentalists have identified as a litmus test for President Obama’s environmental bona fides, I see the pipeline, which has strong Republican support as well as some Democratic support, as a done deal, perhaps as part of a tradeoff with other Democratic priorities such as immigration reform.

The issue of global warming and climate change is a difficult partisan issue but shouldn’t be. The science of understanding global warming is advancing steadily, its risks are clear to most people, and the largely negative impacts of climate change are increasingly being documented. The problem in the U.S. Is the political clout of industries dependent on sales of fossil fuels. In addition, Republican control of the Senate means that chairmanship of the Environment and Public Works Committee will fall to Sen. James Inhofe (R-OK), a climate change denier. This is clearly bad news for environmentalists and others who are concerned about climate change, but also for Republicans and Democrats who will eventually have to deal with this global crisis. Inhofe can slow things down and probably will, at least for the next two years before another Senate election is scheduled. It will be up to members and leaders of both parties to limit the damage that Inhofe can do.

image

Support for clean energy (efficiency, renewables) should also not be a partisan issue, but unfortunately is. Vested interests in the traditional energy industries still have too much power with a Congress highly dependent on campaign funds. My views on the need to accelerate the transition to a clean energy economy are clearly stated in quite a few of my blog posts, reflecting my view that such a transition is inevitable and clearly in the national interest. Unfortunately, I expect the next few years, under Republican control of Congress, to be a repeat of the years under President George W. Bush (‘Bush 43’) when lip service was paid to clean energy but budget support didn’t follow. As I was taught on my first days in Washington, DC in 1974, budget is policy. I hope President Obama will take a strong stand on these issues, despite Republican electoral gains, since he no longer has to protect vulnerable Democratic candidates.

I bring water into this discussion because water and energy issues are ‘inextricably linked’. Energy production requires water and provision of clean water supplies requires energy. Republicans as well as Democrats must recognize the need to consider these two issues together, and I think they will. This issue needs visibility and increased understanding on the part of politicians and the public, and is a natural for bipartisan cooperation. I hope I am right.

Obviously, I have only touched lightly on the many energy and environmental issues facing the U.S., and encourage others to join me in this discussion. These next few years should be interesting indeed!

Grids, Smart Grids and More Grids: What’s Coming

In an earlier blog post on energy storage I stated that there are two developments related to the widespread use of renewable energy that ‘I would fall on my sword for’, energy storage and smart grids. This post discusses the second of these in the context of large-scale smart grids and smaller minigrids. Both are critical to the future of renewable energy in both developed and developing countries.

Grids are collections of wires,switches,transformers,substations, and related equipment that enables the delivery of electrical energy from a generator to a consumer of that energy. A traditional grid structure today is shown below:

image

The first grid, for delivery of alternating current (AC) electricity, was put into operation in 1886. Electrical energy can be delivered as either AC or DC (direct current) electricity, but for over a century AC has been the preferred delivery mechanism. A more complete discussion of AC vs. DC is a good topic for a future blog post.

The traditional grid is a one-way distribution network that delivers power from large centralized generating stations to customers via a radial network of wires. Regional grids, when integrated, constitute a national grid, something the historically balkanized U.S. electric utility system is still trying to achieve. Transmission lines are long distance carriers of electrical energy transmitted at high voltages and low currents to minimize electrical losses due to heating in wires. This high voltage energy is then reduced via transformers to lower voltage, usually 120 or 240 volts, to supply local distribution networks that bring the energy to our homes and businesses. The U.S. Energy Information Administration estimates that national electricity transmission and distribution (T&D) losses average about 6% of the electricity that is transmitted and distributed in the United States each year.

While the traditional grid has brought the benefits of electricity to billions of people for many decades, its shortcomings have become more visible in recent years. The problem is its vulnerability to disruption by extreme weather events (only a small fraction of T&D wires are underground), physical attack and accidents leading to widespread power outages, cyber attack in today’s world of increasing dependence on information technologies, and even large solar storms that strike the earth occasionally and interact with the T&D system acting as giant antennas.

image

The utility industry has usually (but not always) resisted putting wires underground because of high costs, and increased effort is going into trimming trees that can fall on or otherwise disrupt power lines. Control of the grid has also been improved to minimize the possibility of disruption in one grid sector spreading to others, but this is a costly work in progress. What is looming as a major threat to the traditional grid is its increasing dependence on automated remote control via advanced computer/information technologies built into the grid system that are vulnerable to hacking and other malevolent interventions.

Grid systems with computer controls are referred to as smart grids. Through the gathering, communication, analysis, and application of analog or digital information on the behavior of suppliers and consumers, a smart grid can use automation “..to improve the efficiency, reliability, economics, and sustainability of the production and distribution of electricity.” The issue of cyber vulnerability has only begun to receive careful attention in recent years as the hacking phenomenon has surged and the ability to interrupt remote industrial activities via computer viruses such as Stuxnet have been demonstrated.

image

What can be done to protect against this vulnerability? Considerable effort is going into developing software that is resistant to hacking, but this is proving extremely difficult to achieve. As has become all too obvious, there are lots of talented hackers out there and some of them are supported by national governments. Nevertheless, this is a path that has to be pursued, and is becoming a priority in the training of new IT programmers and specialists.

Another approach is to move away from the historic centralized grid and move to a grid system where disturbances can be isolated (islanded) once detected and thus unable to affect other parts of the grid. This will require distributed generation sources that supply unaffected parts of the grid, and could be other centralized generators that can be tapped or local renewable energy sources (wind, solar) that are not in the disturbed grid sector.

Traditional grids are expensive, and extending these grids from urban to remote areas often can not be justified economically. This is particularly true in developing countries where most of the world’s 1.5 billion people without access to electricity reside. Improving access to modern energy services in rural areas is a major development priority, and there is increasing attention to decentralized generation and distribution through mini-grids. “A ‘mini-grid’ is an isolated, low-voltage distribution grid, providing electricity to a community – typically a village or very small town. It is normally supplied by one source of electricity, e.g. diesel generators, a solar PV installation, a micro-hydro station, etc., or a combination of the above.” It includes control capability, which means it can disconnect from a traditional grid and operate autonomously.

A recent workshop organized by the Africa-EU Renewable Energy Cooperation Programme (RECP), held in Tanzania in September 2013, focused on this rapidly emerging option – ‘Mini-Grids: Opportunities for Rural development in Africa’. The workshop background was described as follows: “Given Africa’s abundance of renewable energy resources, the widespread existence of isolated, expensive, highly-subsidized fossil-fuel based mini-grids on the continent, very low grid connection rates, the often low levels of electricity demand from households, the high costs associated with grid extension, the lack of reliable, centralized generation capacity and increasing levels of densification as a result of ongoing urbanization, renewable energy and hybrid-based mini-grids provide a practical, efficient energy access solution.” It should also be noted that the use of renewables can reduce fossil-fuel use, reduce carbon emissions, and create local jobs and economic development.

image

Another type of mini-grid is the micro-grid, a term used to describe mini-grids that deliver DC electricity to its consumers. Still another variation is the skinny-grid, which emphasizes the use of energy efficiency technologies to reduce consumer demand and thus allow the use of thinner and less expensive connecting wires between generators and end users.

I will conclude this blog post by discussing the role of smart grids in facilitating the integration of renewable energy into the grid. Renewable energy is now growing rapidly as a share of the global energy mix and this trend will continue as we move further into the 21st century. We are also learning that, despite the variable nature of solar and wind energy, by using the control features of increasingly sophisticated smart grids and the use of energy storage, this integration can be done safely and cost effectively with high levels of renewables penetration.

IRENA, the International Renewable Energy Agency headquartered in Abu Dhabi, has addressed this issue in a comprehensive November 2013 report entitled ‘Smart Grids and Renewables’. As stated in the Executive Summary: “This report is intended as a pragmatic user’s guide on how to make optimal use of smart grid technologies for the integration of renewables into the grid. …The report also provides a detailed review of smart grid technologies for renewables, including their costs, technical status, applicability and market maturity for various uses.” It acknowledges that “Much of what is known or discussed about smart grids and renewables in the literature is still at the conceptual/visionary stage..” but includes “..several case studies that involve actual, real-world installation and use of smart-grid technologies that enable renewables.” The report also points to needed policy and regulatory changes for successful renewables integration. It is a valuable and forward-looking document.

Vulnerabilities of U.S. Infrastructure: We Need To Pay More Attention

U.S. infrastructure is highly vulnerable to natural disasters and sabotage and needs increased attention from all levels of government. It is an issue that first caught my attention in the 1980’s and continues to concern me. This blog is my first attempt to write down my thoughts on what I consider a scary subject.

‘Infrastructure’ is defined by Wikipedia as “basic physical and organizational structures needed for the operation of a society or enterprise, or the services and facilities necessary for an economy to function. The term typically refers to the technical structures that support a society, such as roads, bridges, water supply, sewers, electrical grids, telecommunications, and so forth.”

My first exposure to the complexities of maintaining infrastructure came in 1985 at a meeting of the Council of the National Academy of Engineering (NAE). I was then a staff person at the NAS/NRC. Part of the discussion was in response to a Council member’s suggestion that the NAE undertake a study of the vulnerability of the U.S. power distribution network, in response to several instances of power blackouts. Pros and cons of such a study were discussed for about half an hour until it was agreed that the topic was too complicated to undertake a study. I remember that discussion like it was yesterday and have never stopped thinking about it. Hopefully, lots of people today are giving much more thought to that issue, along with other national vulnerabilities, but is it enough?

Let me be specific about my concerns:
– most of our electricity supply today comes from large, centralized power plants that are not terribly well protected if at all (nuclear power plants are protected, but how well is a good question), and most power is distributed over above-ground power lines that are subject to falling trees, storm damage, or sabotage. In my opinion it wouldn’t take much to disable a portion of our electrical grid that removes power from large numbers of people and other utility customers. This concern is exacerbated by our increasing computer control of the grid and its vulnerability to malevolent hacking. Given today’s level of protection against such hacking I am very worried.

Another vulnerability of our power system, one that has received some increasing attention of late, is the impact that an electromagnetic pulse from a solar flare could have on that system. The power line system can act as a giant antenna that captures solar flare energy that overloads the system and burns out power lines and transformers (Note: this happened in the 1860’s and burned out many telegraph lines). While physical components can be replaced it takes time, during which most people will be without power unless they have a backup generator. This is especially true for replacing the large power transformers in the system that are quite expensive and not routinely inventoried.

– another area of concern is the U.S. water supply. In fact, immediately after I learned of the 9/11/2001 attacks in New York City, and in my capacity as a DOE official, I immediately placed a call to one of DOE’s Power Administrations with responsibility for water reservoirs that serve as hydroelectric power as well as domestic water sources. My question was: What are you doing to make sure nobody is poisoning that water supply? We could not discuss that on the telephone, but it was my first thought about how else can a terrorist disrupt our country. I see our water supplies as poorly protected, with a critical need for sensors that can detect even small amounts of contamination. This latter topic is now getting some attention at DOE’s National Laboratories.

A disrupted water supply also has major implications for food production and public health, along with other potentially impacted areas of national life.

– I will end this blog by mentioning only one other area of concern out of the many others that could be discussed, telecommunications. Our communication systems today (telephone, internet, GPS, weather forecasting, ….) are highly dependent on solar-powered satellite links and any disruption to these links, whether inadvertent or deliberate, can disable critical aspects of our society. As a ‘renewable energy advocate’ I am particularly sensitive to the suggestion that we place large (multi-gigawaat) solar power satellites in synchronous orbit around the earth and beam the power down via microwaves. This concept has some strong advocates but I’m not one of them. While the cost of putting large solar arrays in orbit is an obvious concern, I worry most about the vulnerability of such a large array to technological failure (there are micrometeorites up there and things do break, don’t they) and deliberate military attack. One proposal I read about, and never got over, was to put a 10-gigawatt array in orbit above New York City, whose peak demand is about that size. In my opinion, and apparently that of many other people, that’s crazy and I don’t mind saying so.

Nevertheless, reasonably-sized earth-orbiting solar-powered satellites are an important part of today’s world and provide unique and invaluable services. Their vulnerability to failure due to wearing out, micrometeorites hits and solar flare radiation place many services on which we depend at risk.

I see this issue – the vulnerability of our infrastructure systems – as requiring significantly increased national attention, debate and financial support. Please join me in being part of this debate.

image