Recalling a Bit of Solar Energy History

The article attached below was published on February 11th in the New York Times. It deals with the dedication of a solar energy project on land owned by former U.S. President Jimmy Carter (1977-2001) and is included here because it triggers a whole series of memories for the author of this blog. The following introductory comments also provide some historical context for understanding President Carter’s important role in recognizing the potential of solar energy in the 1970’s.

President Carter took office on January 20, 1977 and then wisely appointed Jim Schlesinger to be Secretary of the newly formed Department of Energy (DOE). A bit more than a year later, on May 6, 1978, the President traveled to Golden, CO to dedicate the Solar Energy Research Institute (SERI), newly created to expedite federal R&D efforts on renewable energy. During his dedication speech the President announced a new multi-agency federal study of renewable energy’s potential and assigned DOE as the lead agency. The specific guidance for the study, prepared by the President’s Domestic Policy staff, called for: “A thorough review of the current Federal solar programs to determine whether they, taken as a whole, represent an optimal program for bringing solar technologies into widespread commercial use on an accelerated timetable;
A sound analysis of the contribution which solar energy can make to U.S. and international energy demand, both in the short and longer term;
Recommendations for an overall solar strategy to pull together Federal, State and private efforts to accelerate the use of solar technologies.”

This blog’s author, who had joined DOE as a political appointee the previous month, was assigned by his boss, Al Alm, head of DOE’s Policy Office, to head up the day-to-day activities of the study. At its peak 175 senior officials from 30 federal departments and agencies participated in the study, which also included extensive public input. A final report was delivered to the Carter White House on December 6, 1978. It concluded that “..if one assumes the higher future oil price scenario and this Maximum Practical effort, solar (a shorthand for renewable energies) could provide about 20 percent of the nation͛’s energy by the year 2000.”

It was officially published as a U.S. Government report in February 1979 and formed the basis of President Carter’s June 20, 1979 Solar Energy Message to the Congress. In that message Carter outlined “..the major elements of a national solar strategy” and his words showed that he understood the importance of committing “..to a society based largely on renewable sources of energy”. He deserves great credit for this foresight, which unfortunately was not shared by his successor in the White House. The report was also the basis of his speech dedicating a number of solar water heating panels placed on the White House roof.

On a personal level it was particularly satisfying to see President Carter still supporting the deployment of solar energy systems and receiving long-delayed credit for his role in moving public thinking about solar and other renewable energy technologies forward. He took an important first step that is now becoming a global fast march toward a clean energy future.

……………………………..

Jimmy Carter Makes a Stand for Solar, Decades After the Cardigan Sweater
By ALAN BLINDER

Former President Jimmy Carter, 92, unveiled a solar energy project to help power his hometown. While President Trump has depicted himself as a champion of coal, Mr. Carter’s project aims to be a model for energy self-sufficiency and job growth.
PLAINS, Ga. — The solar panels — 3,852 of them — shimmered above 10 acres of Jimmy Carter’s soil where peanuts and soybeans used to grow. The panels moved almost imperceptibly with the sun. And they could power more than half of this small town, from which Mr. Carter rose from obscurity to the presidency.

Nearly 38 years after Mr. Carter installed solar panels at the White House, only to see them removed during Ronald Reagan’s administration, the former president is leasing part of his family’s farmland for a project that is both cutting edge and homespun. It is, Mr. Carter and energy experts said, a small-scale effort that could hold lessons for other pockets of pastoral America in an age of climate change and political rancor.

But Mr. Carter’s project, years in the making, has come into operation at a dizzying moment for renewable energy advocates. Although solar power consumption has more than doubled in the United States since 2013, President Trump has expressed skepticism about the costs of such energy sources, and he has pledged to revive the nation’s languishing coal industry. Yet in some of the rural areas where Mr. Trump enjoys substantial support, renewable energy projects have emerged as important economic forces.

“I hope that we’ll see a realization on the part of the new administration that one of the best ways to provide new jobs — good-paying and productive and innovative jobs — is through the search for renewable sources of energy,” Mr. Carter, 92, said in an interview at his former high school. “I haven’t seen that happen yet, but I’m still hoping for that.”

Although Mr. Carter, now decades removed from the night in February 1977 when he donned a cardigan sweater and spoke of the country’s “energy problem,” remains a keen student of energy policy, the solar project is also an extension of his legacy here.

Mr. Carter has long shaped Plains, where he is known as “Mr. Jimmy,” and the Sunday school teacher’s grin — in snapshots, in paintings and in caricature on Christmas ornaments and a 13-foot peanut statue — is hard to miss. The presidential seal graces welcome signs, which are illuminated, fittingly, by solar electricity, and the Jimmy Carter National Historic Site has attracted more than 1.6 million visitors since 1988.

The project on Mr. Carter’s land, which feeds into Georgia Power’s grid and earns the former first family less than $7,000 annually, did not need to be large to serve much of Plains, population 683 or so. It began when a solar firm, SolAmerica, approached Mr. Carter’s grandson Jason Carter about the possibility of installing panels here.

The former president, who was 11 when his boyhood home got running water after his father installed a windmill, did not need convincing and became deeply involved with the project, writing notes in the margins of the lease agreement and visiting the site regularly.
Mr. Carter, Jason Carter recalled this week, regularly sent pictures of the construction on the farmland, which he often passed during walks here with his wife, Rosalynn.
“When I told people we were getting solar panels, they said, ‘In Plains?’” said Jan Williams, who runs the Plains Historic Inn and helps to organize Mr. Carter’s regular Sunday school classes, which remain a draw for tourists. “They say, ‘Well, that’s because of Jimmy Carter.’ It is because of Jimmy Carter. Plains is all because of Jimmy Carter.”
The Plains project, limited in size, according to Mr. Carter and SolAmerica, because of what existing infrastructure could handle, is far from the first solar effort in Georgia. But it is among the highest-profile projects in a state where, after years of reluctance, regulators have demanded that the predominant utility company place a greater emphasis on solar power.
In this state, and in other parts of the country where many residents are unconvinced of climate change, renewable energy supporters have often tailored their pitches to focus on economic benefits. A plurality of Georgia’s electric generation jobs are in solar, according to the Department of Energy.
“The old politicized arguments about renewable energy being for coastal liberals just don’t play anymore in parts of the country where they’re experiencing firsthand the economic benefits of renewable energy development and job creation,” said Jodie Van Horn, the director of the Sierra Club’s Ready for 100 campaign, which pushes American cities to commit to entirely renewable energy offerings.
Renewable energy supporters do not have to ignore climate change arguments entirely, though. In 2014 in Sumter County, which includes Plains, 62 percent of residents believed global warming was happening, according to an estimate from the Yale Program on Climate Change Communication. That is slightly higher than some counties in metropolitan Atlanta.
But Mr. Trump’s ascension has placed new pressure on renewable energy boosters. Although Mr. Trump has pledged to promote a policy that would “make full use of our domestic energy sources, including traditional and renewable energy sources,” he has proudly depicted himself as a champion of coal.
Stan Wise, the chairman of the Georgia Public Service Commission, which has no Democratic members, said he expected solar to endure, in part because it had “found its niche.”
“It may not grow as quickly in this country without benefit of federal government assistance, but I think if you leave these entities alone, whether it’s coal or gas or solar, they’ll find their way if they’re right in your state,” said Mr. Wise, who noted that Georgia Power had, after a bidding process, accepted Mr. Carter’s proposal to participate in a solar program it runs.
But Mr. Trump’s views have alarmed Mr. Carter.
“I’m afraid — and hope that I’m wrong — that Trump might do the same thing that Ronald Reagan did and say we can be sufficient ourselves without renewable energy,” Mr. Carter said. “But I hope he doesn’t do that.”
This week, though, Mr. Carter’s energy ambitions were decidedly more local when, dressed in jeans with a small mud stain near his left ankle, he alighted from a gray Ford pickup truck to see the solar panels again. But the memories of Mr. Carter and his wife were not far from the presidency.
“It’s very special to me because I was so disappointed when the (hot water) panels came off of the White House, and now to see them (PV panels)in Plains is just terrific,” Mrs. Carter said softly after a ribbon-cutting ceremony.

An Interesting Interview with President Obama’s Science Advisor

Dr. John Holdren has served as President Obama’s Science Advisor and Director of the White House Office of Science and Technology Policy throughout the eight years of the Obama presidency.  I found the following interview of Dr. Holdren of great interest and reproduce it here for the benefit of this blog’s readers. It was conducted by Kiley Kroh, Senior Editor of the e-journal ThinkProgress and first published in that journal on December 21, 2016.

………………………………………………………………………………………………….
Can the world fight climate change in the era of Trump? Obama’s science adviser thinks so: Dr. Holdren weighs in on climate science, denial, and why every president needs a science advisor.

image

Dr. John Holdren and President Obama

When asked what has kept him in his job for so long, the longest serving presidential science adviser in history answered without hesitation.
“What kept me in the job is working for the most science savvy president since Thomas Jefferson,” Dr. John Holdren said. “And in a situation where there’s a lot more science to be savvy about today than there was when Thomas Jefferson was president.”
Holdren was clear that the man in the Oval Office, that man’s respect for science and innovation, and his desire to elevate those fields across government all made the past eight years a once in a lifetime opportunity.
“I would not have jumped off this ship for anything,” said Holdren.
But the winds of change are blowing hard. President Barack Obama will vacate the White House in a month and the tenor of the group assembled to replace his administration, particularly with regard to science policy, could not be more different. President-elect Donald Trump has repeatedly called climate change a “hoax” and recently said “nobody really knows” whether climate change is real. (In reality, scientists are quite certain it is both happening and largely the result of human activity.)
Trump has already amassed an alarming number of people who reject the scientific consensus regarding climate change, have deep ties to the fossil fuel industry, and are quite clear regarding their intent to undo or weaken the Obama climate legacy. His transition team has asked the Department of Energy to name staff who worked on Obama administration climate policy, and pressed the State Department about its international environmental spending.
In the face of this dramatic shift, the scientific community is bracing itself for an administration that could be dismissive, or outright antagonistic, towards science — some are even going as far as to copy government climate science data on independent servers to ensure its preservation.
Holdren is nevertheless optimistic that the forces moving the world toward progress on climate change are stronger than the pull of denial, and that the advancements made in the past eight years will serve as building blocks rather than targets. While as a political appointee he’s prohibited from discussing the policies of the president-elect, he had a lot to say about climate denial, the importance of his position, and where we go from here. Read on for the highlights from our recent interview.
So much of what you were able to accomplish seems driven by a president who really prioritized science and gave it the funding and attention it deserves, so what happens to all of these initiatives moving forward?
I can’t speculate about the next administration but I will say this: First of all, the issue of addressing the climate challenge should not be a partisan issue. It’s about the economy, public health and well-being, national security — these are not fundamentally partisan issues, so one has to hope that that will increasingly be recognized.
The second thing I’ll say is that a lot of the progress is being driven by forces that are not fundamentally policies of the federal government. I think the two biggest drivers of progress on climate change around the world today are that the symptoms of climate change, the damages from climate change, are becoming ever more apparent. And the opportunities to do something are also growing — in substantial part because clean energy is getting cheaper. That’s going to be extremely important moving forward, regardless of what government policies do or don’t materialize in the United States.
If the U.S. is no longer at the forefront pushing climate commitments at the international level, is it your sense that China is going to step up? Are there other countries you’re looking to?
Let me be clear, I very much hope the United States will continue to carry out these forward-leaning actions to reduce emissions and build preparedness and resilience, because I think it makes great sense environmentally and economically. But if we don’t, I do believe most other countries will continue with their efforts in this domain because, again, they understand it’s in their interest to do so. China’s already stepping up.
But I don’t think for a minute that if, for one reason or another, the U.S. reduced its level of activity in this space, that China would reduce its [activity]. I expect that the European countries, who are themselves experiencing the impacts of climate change, will stay the course; I think Canada will stay the course; I think many of our friends in Latin America will stay the course; I think India will stay the course.
Everybody is suffering from climate change, and no matter how much hand-waving a few folks may want to continue to do about how it’s not all proven, the fact is everybody around the world now understands that it’s real, that human activities are causing it, and that aggressive action is required to fix it.

You mentioned your belief that several major countries will continue to stay the course on climate action. Can you talk about the course we’re on globally? Obviously, the Paris agreement was a significant achievement, but how do you view that in terms of what we need to be doing to stave off the worst impacts of climate change?
First of all, as you know, it’s not enough. Everybody who looks at this problem realizes Paris is a down payment on a longer term strategy to reduce emissions much more drastically. By the end of this century, we have to be at zero emissions; in fact, we should be at zero emissions, net, before the end of this century if we want to avoid the most catastrophic consequences of climate change. The key point about Paris, really, is that it is the biggest step in the right direction the world has ever taken, and it was taken much later than those of us who watch this problem closely would have wished. After 2030, when the most far-reaching of the Paris targets occur, we’re going to need a very powerful encore; we’re going to need much deeper reductions going forward, we’re going to need better technologies to do it.
One of the things I’ve found a little irritating about the climate science discussion over the years is the discussion about when will we reach dangerous human interference in the climate system. I think it’s very difficult to argue climate change isn’t already dangerous. We’re not really in the business any longer of trying to avoid dangerous climate change — we’re already in dangerous climate change. We’re trying to avoid catastrophic climate change and I think it would be better to be clear about that.
“We’re not really in the business any longer of trying to avoid dangerous climate change… We’re trying to avoid catastrophic climate change.”
I know you can’t speculate on the incoming administration, but it’s my sense the tide was turning over the past few years to make it less acceptable for a public figure to deny climate change. What is it about climate denial that makes it so difficult to overcome?
I think it’s a misconception that’s driven a lot of the expressions of doubt about the science — that folks don’t want to accept the science because they think accepting it is tantamount to accepting a draconian regulatory regime on our energy choices. The reality is that there are many ways to skin this cat. As economists from all parts of the political spectrum tell us the most efficient ways to reduce greenhouse gas emissions would be a market-based approach, putting a tax on carbon emissions that could be offset by reductions in other taxes.
If you accept the science, you might prefer to accept a carbon tax or a cap-and-trade approach, which does more or less the same thing under different administrative arrangements. Either can be adjusted over time to get the emissions result that you want. And that’s basically a market-based approach rather than a regulation-based approach; it should make Republicans happy.
I’m sure you’ve seen the various efforts to sell Republicans and conservatives on the solutions — clean energy, even a carbon tax — without emphasizing or asking them to accept the climate science component. Do you think that can work?
I think ultimately we will not do enough without accepting the reality of climate change and the need to address it in a more serious way going forward than we have in the past. We will do a lot of things that go in the right direction based on market forces alone — as I noted before, basically, clean energy in many of its manifestations is getting cheaper. But I don’t think the market alone, without a price on carbon or its less efficient equivalent in a regulatory approach, will get us as far as we need to go.
In light of the reports regarding the fear in the scientific community about a potentially hostile environment ahead, what is your advice for scientists trying to preserve their ability to do their jobs?
Climate scientists should keep doing their science and they should keep publishing the results, and keep talking about the implications of the results. And they should keep making their data available so others can check their results. But coming back to a question you asked earlier about what continues to drive so much of the rejection of scientific consensus, the phrase has been around for some quite time: “do you believe in climate change?”
The notion that this is a matter of belief rather than respect for the conclusions of an expert community — this is not a matter of belief. Climate change doesn’t care whether you believe in it or not. It’s going to keep going.
In terms of big signs of climate disruption, what’s happening in the Arctic is one of the most alarming stories of the year. Can you talk about that, and any other major signs you’re following?
The Arctic is not only experiencing climate change much more rapidly than the rest of the world, but the consequences don’t stay in the Arctic. As we thaw permafrost, we are increasing the release of carbon dioxide and methane from the decomposition of organic matter. Wildfires in the Arctic are burning unprecedented areas; even the tundra is burning now. Sea level rise, combined with loss of sea ice protection from waves, is causing drastic coastal erosion around the Arctic, and the mainly indigenous peoples who live in villages on the vulnerable coastlines are in many cases having to relocate. I will tell you now from rather extensive experience meeting with the people who live in the Arctic, there are no climate deniers up there.
“This is not a matter of belief.”
There are some other things that are starting to get the attention they deserve. One is wildfires; there’s really an extraordinary story, and a very dangerous one going forward. A second is the danger from extreme heat, and the circumstance that there are parts of the world where, already in the hottest months, in the hottest parts of the year, it’s not possible to work outside without dying because of the heat stress. You’re seeing larger and larger areas of the world, as we’re moving further into this century, where it’s going to be impossible to do outdoor labor for much of the year. This is really a stunning result.
The other one that I think is helpful in explaining to people that, despite the complexity of this system, there are certain things that can be understood in pretty intuitive terms, is the relationship between warming and torrential downpours. That was long predicted, but we’re now seeing these increases in torrential downpours and associated flooding across much of the world. People who have experienced flooding of a sort that never previously occurred in their lifetime are generally not among the deniers.
As you’re reflecting on your legacy and work, can you tell me why, from your perspective, it’s important for a president to have a science adviser and receive objective scientific advice?
First of all, the president needs a source of science and technology advice that’s independent of the agendas of individual departments and agencies. It’s very important that there be somebody close enough to the president to tell him or her scientific and technological insights that may not agree with the prior preferences of the president.
Being able to work for this president on these issues has been the highlight of my career, and I expect that a lot of what we have done will survive as building blocks of progress going forward.
(This interview has been edited and condensed for clarity.)

 

More History – Circa 1997

This is the second of the two articles from the 1990s mentioned in the previous blog post. It was published in the November-December 1997 issue of Asia Pacific Economic Review.

……………………….

Why We Must Move Toward Renewable Energy
by Allan R. Hoffman

Rapid economic growth in the Asia-Pacific region has been and will continue to be mirrored by a rapid increase in energy demand. Between 1970 and 1995 primary energy demand in the region increased from 19 to 70 Quads (quadrillion BTUs). This figure is expected to increase to 135 Quads in 2010 and to 159 Quads in 2015 (Source: Energy Information Administration International Energy Outlook, 1997). The World Bank has estimated that developing countries alone will require 5 million megawatts of new electrical capacity over the next four decades to meet the needs of their expanding economies. The world’s current total installed capacity is just under 3 million megawatts. Thus, even if the World Bank’s estimate is too optimistic, installed world generation capacity will essentially have to double during the next 40 years. This much new capacity will require trillions of dollars of new investment.

What does this mean for renewable electric technologies – I.e., electricity generated from solar, biomass, wind, geothermal and hydropower resources? Fossil fuels are likely to remain the dominant energy source through the middle of the next century, while renewables can anticipate capturing only a fraction of that market. Every one percent of the emerging market in developing countries represents $50-100 billion of investment. If renewables can capture several percent of that market, the potential exists for several hundred billion dollars of renewable technology sales worldwide over the next four decades. Why are renewables important? They are the most environmentally responsible technologies available for power generation. Most renewable technologies have proven effective and reliable. Efforts are underway to further improve their technological performance, which may be the easiest problem to solve.

Providing Access to Renewables for Developing Countries
The more difficult problems are how to get renewable technologies into people’s hands, how to pay for them, and how to set up the non-technological infrastructure needed for widespread deployment of renewables. In many applications, 
renewables are the least cost energy option. 
Thinking on energy costs is distorted in the 
United States because of relatively low 
energy prices. Outside the US the story is 
very different. Average electricity prices in 
Germany and Japan approach or exceed 
20 cents per kilowatt-hour. Even in remote 
parts of the US, such as Alaska, electricity prices range from 40 to 60 cents per kilowatt-hour. In many parts of the world, including remote areas of the Asia-Pacific 
region, it is hard to put a price on electricity because there is no access to it. The current world population is 5.8 billion people. 
It is estimated that more than 2 billion of 
those people have no access to electricity. 
In China alone that number is 120 million. 
At least another half billion people around the world have such limited or unreliable 
access to electricity, that for all intents and 
purposes they have no electricity. If we are 
to make a difference in these people’s lives, 
we have to make available to them free-standing power sources suitable for off- 
grid applications – i.e., renewable electric 
technologies. When people have no access 
to electricity, even a 35 watt photovoltaic 
panel or a small wind machine can make a 
very large difference in their lives. Where 
the alternative is to extend expensive electrical transmission and distribution systems, use of these technologies can be cost 
effective.

What is the status of renewable 
technologies today? Costs for photovoltaics, the use of semiconductor materials to 
convert sunlight directly into electricity, 
have come down from approximately $1 per kWh in 1980 to 20-30 cents per kWh 
today. With increasing scales of manufacturing and increasing emphasis on thin-film devices, electricity costs from photovoltaics are expected to fall below 10 cents 
per kilowatt-hour early in the next decade. 
Current annual world production has just 
exceeded 100 megawatts, and is growing 
at more than 20 percent per year. This corresponds to a doubling time of less than 4 
years. Current US. production capacity (40 
megawatts per year) is fully subscribed, 
and half a dozen new or expanded manufacturing plants are scheduled for operation within the next 18 months. Roughly 
70 percent of US. production is currently 
exported.

The “3- Flavors” of Solar Thermal 

Another form of solar energy, solar thermal technology, concentrates sunlight to 
create heat that can then be used to generate stearn and/or electricity. This technology comes in 3 “flavors”: troughs that con
centrate sunlight along the axis of parabolic 
collectors; power towers that surround a 
central receiver with a field of concentrating mirrors called heliostats; and dish-engine systems that use radar-type dishes to 
focus sunlight on heat-driven engines such 
as the Sterling engine. Electricity costs from 
the parabolic trough units are in the 10 to 
12 cents per kilowatt-hour range, but can 
be reduced. Costs of electricity from the 
other two solar thermal technologies are 
expected to be even lower than those of the 
parabolic trough systems, and could reach 
4 to 6 cents per kilowatt-hour when manufactured in commercial quantities.

The world has large resources of organic 
material, called biomass, which occurs in a 
variety of forms (wood, grasses, crops and 
crop residues). Biomass can be converted 
into energy in a number of ways. As wood-burning fuel, it has been used extensively 
in developing parts of the world, often resulting in widespread deforestation, soil 
loss, declining farm productivity, and increasing likelihood of seasonal flooding. In 
future, the most effective way to use biomass is likely to be gasification, where the 
resulting gas can either be used as fuel for 
high efficiency combustion turbines, or as 
synthesis material for producing liquid fuels. The US Department of Energy (DOE) 
has a series of projects underway to determine how to most effectively use biomass 
for energy production. DOE is experimenting with biomass-coal co-firing in New 
York state, biogasification with bagasse 
(the residue from sugar cane) in Hawaii, 
with wood in Vermont, with switchgrass 
in Iowa, and with alfalfa in Minnesota. Biomass-based electricity has the advantage 
of being a baseload technology (i.e., it can 
be operated 24 hours a day) and is carbon 
dioxide neutral – i.e., the carbon dioxide 
released during its use is recaptured by the 
biomass during its growth. The revenue 
derived from the sale of biomass resources 
can be an important component in rural 
economic development. Costs for biomass-generated electricity are expected to be 
competitive as long as biomass resource 
costs remain reasonable.

Europe “Blows with the Wind”
Many locations offer wind resources. Wind 
is the fastest growing energy technology 
in the world today. Most ofthe 17,000 wind 
turbines in the United States are located in 
California, but a dozen U.S. states (from the 
Dakotas south to Texas) have greater wind 
potential. Today’s highly reliable machines 
(typically available 95-98% of the time) provide electricity at 5 cents per kilowatt-hour 
at moderate wind sites. The next generation of turbines, currently under development, should provide electricity at half that 
cost. Use of wind energy is expanding rapidly in many parts of the world, with 
Europe’s installed capacity now exceeding 
that of the United States (4,000 megawatts 
compared to 1,700 megawatts). India ranks 
third with 800 megawatts of wind generated capacity. Large wind generation 
projects are also being planned for China and other parts of the developing world. 
Geothermal resources – i.e. hot water or 
steam derived from reservoirs below the 
surface of the earth – were first used to generate electricity in Italy in 1904. Today, more 
than 6,000 megawatts of geothermal power 
are installed world wide, with about half of 
that in the United States. Rapid expansion 
of geothermal power is taking place in several places around the world, most notably in Indonesia, the Philippines, Mexico 
and Central America. Geothermal power 
is a baseload technology. It can be a low 
cost option if the hot water or steam re
source is at a high temperature. One California geothermal project produces electricity at 3.5 cents per kilowatt-hour.

Limit to Fossil Fuels?
Given the world energy situation, one can
not project today’s energy system into the 
long-term future. Fossil fuels will continue 
to be the primary fuel source for years to 
come. As history has shown, the transition to a different energy system is likely 
to take 50 to 100 years. The world cannot 
continue to be dependent on fossil fuels. 
Transportation issues are a good example 
of this misplaced reliance. If a reasonable 
fraction of the large and growing populations of China and India start driving cars 
as people in the developed world do, demand and prices for petroleum resources 
will grow rapidly, causing serious international supply problems and political ten
sion; unacceptable environmental consequences will affect us all. There is a limit 
to the Earth’s fossil fuel reserves. Whether 
it takes 50 years, 100 years or longer, these 
reserves will run out. The head of Shell 
UK, Ltd., a highly respected oil industry 
planning organization, has said: “There is 
clearly a limit to fossil fuels. Fossil fuel resources and supplies are likely to peak at 
around 2030, before declining slowly. Far 
more important will be the contribution of 
alternative renewable energy supply.” For 
many reasons, financial and otherwise, 
nuclear power is not likely to meet the energy needs of developing countries. Hydro
power is the most mature form of renewable energy and already provides a significant share of the world’s electricity. Though 
potential exists for further hydropower developement in many parts of the developing 
world, significant hydropower expansion in 
developed countries is unlikely to occur 
because of environmental concerns. With 
limited choices, the world is entering the 
early stages of an inevitable transition to a 
sustainable world energy system dependent 
on renewable energy resources.
_____________________________________________________________
Dr. Allan R. Hoffman is Deputy Assistant Secretary of 
the Office of Utility Technologies, Office of Energy Efficiency and Renewable Energy, U.S. 
Department of Energy in Washington, D.C.

A bit of history – circa October 1995

While going through some files recently I came across several articles from my days in the Bill Clinton Administration, first as Associate Deputy Assistant Secretary and then as Acting Deputy Assistant Secretary for DOE’s Office of Utility Technologies (OUT). This Office had responsibility for developing the full range of renewable electric technologies as well as hydrogen and energy storage technologies. In reading these articles twenty years later I am struck by how my words were in many ways the same then as now. What has changed is the development status of the technologies, their costs, the extent of their deployment, and the enhanced understanding of global warming and its implications for climate change. I have selected two of these articles for republishing in this blog. The first, from 1995, is republished below to provide a bit of historical context for the changes that are occurring today in our energy systems. It was part of a newsletter set up to improve communications between the leadership and staff of OUT. The second, from 1997, will be published in my next blog post. In a subsequent blog post I will offer my thoughts on what Donald Trump’s election as U.S. President could mean for U.S. energy and environmental policies and programs.

………………………………………………………….

From the Desk of the ADAS:
Allan Hoffman
October 1995

”A vision helps us stick to our beliefs and keep going in the face of resistance, chaos, uncertainty and the
inevitable setbacks. ”

In thinking about what to say in this piece, I realized that much of what I say in speeches outside of the
Department is often not shared with my OUT colleagues. So, given this opportunity, let me share some of my
thoughts on the “vision thing” and related ideas that I often introduce in my presentations. Your comments
and reactions will be appreciated – whether by e-mail. memo, telephone or hallway conversation.

I sometimes begin my remarks by observing that it has been approximately one generation since the Oil Embargo of 1973, the point at which world attention began to focus intensively on energy issues. An often quoted rule-of-thumb is that it takes about a generation for new ideas to begin to penetrate the mainstream. This is the point we find ourselves at today for non-hydro renewable electric technologies. Considerable progress has occurred over the past two decades in improving technological performance and reducing associated energy costs of wind, photovoltaic, solar thermal, biomass and geothermal energy systems – e.g., at least a five-fold decrease in the cost of PV electricity, and the availability of highly reliable wind turbines that can generate electricity at 5 cents per kilowatt-hour in moderate wind regimes. This has brought us to a point where, under certain conditions, renewable technologies can be the low cost option for generating power, presaging significant deployment of these technologies in developed as well as developing countries. In addition, increased deployment of renewables is being driven by concern for the environment (e.g., global climate change) and energy security, and the recognition that widespread use of renewables represents markets in the trillions of dollars. To put some numbers into the discussion, the World Bank has estimated that, over the next 30-40 years, developing countries alone will require 5,000,000 megawatts of new generating capacity. This compares with a total world capacity of about 3,000,000 megawatts today. At a capital cost of $1-2,000 per kilowatt, this corresponds to $5-10 trillion, exclusive of associated infrastructure costs. It is the size of these numbers that is generating increased interest in renewables by businesses and the in- vestment community. It is also the reason for the increasing global competition for renewable energy markets. In addition, and very importantly, the environmental implications of that much capacity using fossil fuels, even in the more benign form of natural gas, are severe. If we are to minimize adverse local and global environmental impacts from the inevitable powering up of developing nations, renewable or other forms of non-polluting and non-greenhouse-gas-emitting power systems must be widely used. In the minds of some nuclear power offers a solution, but the scale of nuclear power plants is often not consistent with the needs or financial condition of developing nations, and the social issues that come with the associated handling of plutonium and radioactive wastes need to be carefully considered by society before it embarks on this path.

Given these considerations the prospect that fossil fuel supplies will begin to diminish before the middle
of the next century, and the need to move to sustainable economic systems, I see no alternative to a gradual
but inevitable transition to a global energy system largely dependent on renewable energy. Previous energy
transitions, e.g., from wood to coal and coal to oil, have taken 50 to 100 years to occur, and I see no
difference in this case. I also believe that over this time period, hydrogen will emerge as an important energy
carrier to complement electricity, given its ability to be used in all end use sectors and its benign
environmental characteristics. In this vision, all renewables will be widely used: biomass for fuels and power
generation, geothermal in selected locations for power generation and direct heating, and wind, hydro,
photovoltaics and solar thermal (in its various flavors) for power generation. Particular applications will be
tailored to’particular local situations. Large amounts of renewable power generated in dedicated regions
(e.g., wind in the Midwest and solar in the Southwest) will be transmitted thousands of miles over high voltage
DC power lines to distant load centers. And, electricity and the services it provides will be available to almost
every one on the planet.

One final word: why is it important to have a vision? My answer is that at the beginning of a major transition, one that will surely be resisted by well-entrenched and powerful vested interests, there will be a certain amount of chaos, a large degree of uncertainty, and setbacks. In the words of the late author Barbara Tuchman, “In the midst of events there is no perspective.” This places a heightened responsibility on the OUT staff and others to keep up their efforts to continue improving the technologies and reducing their costs. A vision helps us stick to our beliefs and keep going in the face of the resistance, chaos, uncertainty and the inevitable setbacks.
Without vIsion, very few transformational events in human history would have occurred.

It is Time to Take the Next Step on Energy Policy

The following piece was first published on energypost.eu and the text is reprinted here as a new blog post.
……………………..

US desperately needs a national energy policy
September 24, 2015 by Allan Hoffman

The US – and indeed the world – is at a crossroads when it comes to the choice on how we want to provide energy services in the future, writes US energy expert Allan Hoffman. According to Hoffman, the US desperately needs a national energy policy that recognizes the importance of moving to a renewable energy future as quickly as possible. Without such a policy, economic growth, the environment and national security will suffer.

There are two fundamental ‘things’ needed to sustain human life, water and energy. Water is the more precious of the two as reflected in the Arab saying “Water is life.” Without water life as we know it would not exist, and there are no substitutes for water – without it we die.

We also need energy to power our bodies, derived from chemical conversions of the food we consume. We also need energy to enable the external energy services we rely on in daily life – lighting, heating, cooling, transportation, clean water, communications, entertainment, and commercial and industrial activities. Where energy differs from water as a critical element of sustainable development is the fact that energy is available in many different forms for human use – e.g., by combustion of fossil fuels, nuclear power, and various forms of renewable energy.

Critical juncture

Today the U.S., and indeed the world, stands at a critical juncture on how to provide these energy services in the future. Historically, energy has been provided to some extent by human power, by animal power, and the burning of wood to create heat and light. Wind energy was also used for several centuries to power ships and land-based windmills that provided mechanical energy for water-pumping and threshing. With the discovery and development of large energy resources in the form of stored chemical energy in hydrocarbons such as coal, petroleum, and natural gas, the world turned to the combustion of these fuels to release large amounts of thermal energy and eventually electricity with the development of steam power generators. Nuclear power was introduced in the period following World War II as a new source of heat for producing steam and powering electricity generators and ships.

My recommendation is to put a long-term and steadily increasing price on carbon emissions to motivate appropriate private sector decisions to use fewer fossil fuels and more renewable energy and let the markets work

Renewable energy, energy that is derived directly or indirectly from the sun’s energy intercepted by the earth (except for geothermal energy that is derived from radioactive decay in the earth’s core), has been available for a while in the form of hydropower, originally in the form of run-of-the-river water wheels, and since the 20th century in the form of large hydroelectric dams. Other forms of renewable energy have emerged recently as important options for the future, driven by steadily reducing costs, the realization that fossil fuels, while currently available in large quantity but eventually depletable, put carbon dioxide into the atmosphere when combusted, contributing to global warming and associated climate change. Renewable energy technologies, except for biomass conversion or combustion, puts no carbon into the atmosphere, but even in the biomass case it is a no-net-carbon situation since carbon is absorbed in the growing of biomass materials such as wood and other crops.

Support for renewables is also driven by increasing awareness that while nuclear power generation does not put carbon into the atmosphere it does create multigenerational radioactive waste disposal problems, can be expensive, raises low probability but high consequence safety issues, and is a step on the road to proliferation of nuclear weapons capability. Another driver is the now well documented and growing understanding that renewable energy, in its many forms, can provide the bulk of our electrical energy needs, as long disputed by competing energy sources.

Clean future

All these introductory comments are leading to a discussion of the energy policy choice facing our country, and other countries, and my recommendations for that policy. This choice has been avoided by the U.S. Congress in recent years, much to the short-term and long-term detriment of the U.S. We desperately need a national energy policy that recognizes the importance of energy efficiency and moving to a renewable energy future as quickly as possible. That policy should be one that creates the needed environment for investment in renewable technologies and one that will allow the U.S. to be a major economic player in the world’s inevitable march to a clean energy future.

Before getting into policy specifics, let me add just a few more words on renewable energy technologies. Hydropower is well known as the conversion of the kinetic energy of moving water into electrical energy via turbine generators. Solar energy is the direct conversion of solar radiation directly into electricity via photovoltaic (solar) cells or the use of focused/concentrated solar energy to produce heat and then steam and electricity. Wind energy, an indirect form of solar energy due to uneven heating of the earth’s surface, converts the kinetic energy of the wind into mechanical energy and electricity. Geothermal energy uses the heat of the earth to heat water into steam and electricity, or to heat homes and other spaces directly. Biomass energy uses the chemical energy captured in growing organic material either directly via combustion or in conversion to other fuel sources such as biofuels. Ocean energy uses the kinetic energy in waves and ocean currents, and the thermal energy in heated ocean areas, to create other sources of mechanical and electrical energy. All in all, a rich menu of energy options that we are finally exploring in depth.

Controversial

Energy policy is a complicated and controversial field, reflecting many different national, global, and vested interests. Today’s world is largely powered by fossil fuels and is likely to be so powered for several decades into the future until renewable energy is brought more fully into the mainstream. Unnfortunately this takes time as history teaches, and the needs of developing and developed nations (e.g., in transportation) need to be addressed during the period in which the transition takes place.

The critical need is to move through this transition as quickly as possible. Without clear national energy policies that recognize the need to move away from a fossil fuel-based energy system, and to a low-carbon clean energy future, as quickly as possible, this inevitable transition will be stretched out unnecessarily, with adverse environmental, job-creation, and other economic and national security impacts.

My recommendation is to put a long-term and steadily increasing price on carbon emissions to motivate appropriate private sector decisions to use fewer fossil fuels and more renewable energy and let the markets work. Nuclear power, another low-carbon technology, remains an option as long as the problems listed earlier can be addressed adequately. My personal view is that renewables are a much better answer.

The revenues generated by such a ‘tax’ can be used to reduce social inequities introduced by such a tax, lower other taxes, and enable investments consistent with long-term national needs. In the U.S. it also provides a means for cooperation between Republicans and Democrats, something we have not seen for several decades. It is clear that President Obama ‘gets it’. It is now more than time for U.S. legislators to get it as well.

Editor’s Note (Karel Beckman, energypost.eu)

Allan Hoffman, former Senior Analyst in the Office of Energy Efficiency and Renewable Energy at the U.S. Department of Energy (DOE), writes a regular blog: Thoughts of a Lapsed Physicist.

On Energy Post, we regularly publish posts from Allan’s blog,in his blog section Policy & Technology. His writings often deal with issues at the intersection of energy technology, policy and markets. Allan, who holds a Ph.D. in physics from Brown University, served as Staff Scientist with the U.S. Senate Committee on Commerce, Science, and Transportation, and in a variety of senior management positions at the U.S. National Academies of Sciences and the DOE. He is a Fellow of the American Physical Society and the American Association for the Advancement of Science.