A Conversation With S. David Freeman

Had a most interesting discussion at lunch today (3 September 2014) with Dave, whose name is well known to older generations of energy policy types but less well known to many younger folks. He and I first met when we both joined the staff of the U.S. Senate Commerce Committee on October 1, 1974. Dave joined as a full-time energy staffer just after leading a major review of national energy policy sponsored by the Ford Foundation (‘A Time to Choose: America’s Energy Future’), and me as a Congressional Fellow/Staff Scientist. Dave is now 88 years old (I’m a relatively young 77) and in my opinion is as sharp, feisty and opinionated as he was when I first met him forty years ago. In the interim he has held a series of high level jobs (Chairman/TVA, General Manager/Sacramento Municipal Utility District, General Manager/New York Power Authority, General Manager/Los Angeles Department of Water and Power) and is still active in trying to close down California’s aging and poorly located nuclear power plants. We had not seen each other in a number of years and today’s lunch was a chance to catch up a bit.

image

We met at noon at his apartment building in DC, and after walking to a nearby barbeque restaurant we got down to filling in the years. We reflected on the work we both did in the 1970’s on energy issues during Senator Warren Magnuson’s tenure as Chairman of the Commerce Committee, and on the many talented people we worked with at that time. We then discussed Dave’s time in Knoxville where he pushed hard to introduce conservation and solar energy into TVA’s energy portfolio and resisted the pressures to add more nuclear power plants. These priorities characterized his subsequent roles at SMUD, NYPA, and LADWP, and remain his priorities today. He was an early voice for clean energy in the U.S., and was appointed by President Johnson in 1967 as “..the first person with an energy responsibility in the federal government.” He has also been termed an “‘eco-pioneer’ for his environmentally-oriented leadership of SMUD.”

Our lunchtime discussion, after appropriate reminiscences, devolved into a discussion of energy policy under President Obama. Dave appreciates that Obama has an understanding of the importance of energy efficiency and renewble energy to our future energy system, but feels strongly that Obama is indecisive and has failed to put action behind his words. In fact, Dave called him “gutless” for failing to provide needed leadership on reducing our use of fossil fuels and making an all-out push on renewables. Dave’s feeling is that Obama is too cautious by nature (he quoted the opinion of an Illinois politician who had worked with Obama) and unwilling to stick his neck out, when what this country needs is a Preident who does just that. Notwithstanding the argument that the President is having a hard time getting any legislation through the Congress, and may have even more trouble after the November elections, Dave’s argument is that we have a critical need to reduce carbon emissions and that we have to start somewhere, even if it takes 10 years to get a meaningful program implemented. It is a powerful argument, as nothing gets done if one doesn’t try.

Dave gave me a lot to think about, as I’ve been a strong supporter of the President and his energy policies, but admit to being concerned about the President’s limited public explanations of his policies, whether energy or foreign policy. He may understand the issues, and Dave and I agree that he does, but is the President being too cautious by far? As a result, is he passing up an opportunity to lead the country in a needed direction at a critical time? As the leader of the nation is it encumbent upon him to propose legislation that limits our use of fossil fuels and puts us more aggressively on the path to a renewable future, even if the likelihood of passage is low to nonexistent in the near future? Upon leaving Dave after lunch I decided to write about our conversation and raise the question that Dave poses. This is the result.

My thoughts upon reflection are the following: despite the obvious resistance that Obama faces from Republicans on anything he proposes, and the need to keep a Democratic Senate if at all possible (so that his last two years in office will not be even more difficult than his first six years), should the President think big and propose what he knows the country needs as opposed to what is politically feasible? My heart says yes, and the side of me that claims to be practical, after many years in Washington, DC, tries hard to understand Obama’s strategy and support it. But Dave may be right – we may have an intellectual President whose nature just won’t allow him to stick his neck out. As I said to Dave, the test for me will be after the November elections, when Obama will have no Democratic candidates to protect and nothing to lose by proposing farseeing energy and environmental legislation. He will not succeed in getting it passed by the most dysfunctional Congress I’ve seen in forty years, but as Dave says, we have to start somewhere.

As those who read my blog will recall, I’ve taken issue with the Clinton-Gore Administration for not doing more on clean energy when they had the chance in the 1990’s. Dave’s point about Obama is similar – we need leadership that looks down the road despite today’s political realities. My final verdict on the Obama Administration’s achievements on energy policy will depend on what comes out of the White House after November. I hope that the President has it in him to do what Dave and I both agree the country needs, but at this point I still have confidence in President Obama. Dave does not.

This is a lot to think about, and I will continue to cogitate on Dave’s perspectives. Hopefully, others will join this discussion via comments on this blog post.

Shale Gas and Hydraulic Fracturing – Framing the Water Issue

A detailed report on fracking (‘Shale Gas and Hydraulic Fracturing – Framing the Water Issue’), co-authored with two Swedish colleagues Gustaf Olsson and Andreas Lindstrom, was released today by SIWI, the Swedish International Water Institute. The report’s Executive Summary is included below; the full report can be found at http://www.siwi.org.

SIWI Report no. 24/Executive Summary
“Shale Gas and Hydraulic Fracturing – Framing the Water Issue” by Andreas Lindström, SIWI, Dr. Allan Hoffman, US Department of Energy/retired, and Prof. Gustaf Olsson, Lund University.

The emergence of shale gas and shale oil has quickly changed the landscape of opportunities for energy provision and security in different regions of the world. Difficulties in assessing the actual quantity of existing global shale hydrocarbon reserves produce opposing views on whether the world is on the verge of a “shale gas revolution” and, if it is, how long it could last. Some argue that shale gas may constitute a backbone of energy supply for specific countries for decades to come, while others say the peak may have passed already.

Despite this, some nations – such as the USA – have already started an ambitious exploitation of this comparatively cheap energy resource, providing new and favourable conditions for domestic energy supplies and costs, and creating new jobs in the booming shale industry. For various reasons other countries have not taken the plunge, despite assessed quantities of shale resources. These reasons include fear of possible severe environmental impacts. These are often associated with shale gas extraction accomplished through the technology known as hydraulic fracturing, or “fracking”; evidence of the impacts is emerging in places where intense, unregulated fracking takes place.

Many of these impacts make themselves felt in water resources. Fracking is a water-intensive activity, and as the reserves are often found in dry areas extraction poses additional challenges in what are often already water-stressed environments. The vast water quantities needed over the life span of a shale gas well, where water is used to fracture rock under high pressure, pile further stress on local fresh water sources which are already needed for many different purposes. At times when water supplies are running short in a specific area it has to be transported to the fracking site from afar.

Water quality is also under threat from fracking as well as the quantity available. Many chemicals used in the fracking fluid (the composition of which is often protected for commercial confidentiality reasons) have increasingly been found to be harmful both to the environment and to human health, yet poor regulations and legislation governing fracking often allow accidents which contaminate surrounding water sources. There is a need for greater responsibility, through developing codes of conduct and regulatory systems governing fracking so as to protect water resources and the environment. It should be adopted by all nations currently exploiting or liable to exploit shale resources as part of their energy supply.

Peak Oil: A Valid or Invalid Concept?

One topic that has come up consistently in my 40+ years of reading and thinking about energy is the notion that the world is running out of fossil fuels. The reality, as best I can tell, is that this is not true on any near-term timescale. Fossil fuels are finite and we are using them faster than nature can replace them, but much remains to be found and utilized if people wish. The concerns stimulated by H. King Hubbert in 1956, when he proposed his theory on oil well production and depletion and published the ‘Hubbert Curve’ (see below) are valid for some assumptions but ignore other realities that make his conclusions, and those of others who have accepted his theory, invalid for long-term planning. I will explain why I believe this in the discussion that follows, recognizing that part of the discussion turns on a definition of what is meant by Peak Oil.

image
A 1956 world oil production distribution, showing historical data and future production, proposed by M. King Hubbert; it has a peak of 12.5 billion barrels per year about the year 2000

Hubbert’s Peak Theory is based on the obvious fact that the utilization of a finite resource must go through an initial start-up, reach a peak level of production, and eventually tail off as the resource is depleted. This is common sense, applicable to all non-renewable resources, and not disputable. What is disputable is the shape of the production/depletion curve and the assumptions that went into identifying the resource to be utilized and eventually depleted. Much of the public discussion that has ensued about Peak Oil, the application of Hubbert’s theory to oil (petroleum) extraction, since publication of Hubbert’s 1956 paper has revolved about these two facets of his theory.

It is important to clarify up front that Peak Oil is the point in time when oil extraction reaches its maximum rate and is not synonymous with oil depletion. Following a peak in extraction rate about half of the resource is still available for extraction, and production rate decreases steadily thereafter. Much discussion has focused on the shape of the declining curve after Peak Oil is reached – plateau? sharp decline? slow decline? – and the implications for the U.S. and world economies that are so dependent on oil supplies.

Hubbert’s theory received great visibility when he correctly predicted, in his 1956 paper, that U.S. domestic oil production would peak between 1965 and 1971. He used the terms ‘peak production rate’ and ‘peak in the rate of discoveries’; the term Peak Oil was introduced in 2002 by Colin Campbell and Kjelll Aleklett when they formed ASPO, the Association for the study of Peak Oil & Gas.

Where the application of Hubbert’s theory has failed (I don’t blame him) is in the boundary conditions (assumptions) on which his theory is based. He did not anticipate, nor did others, the rapid emergence of unconventional oil and the substitutions for oil (alternative fuels, electrification of transportation) that have been or are being developed. He did mention these possibilities and did his best with the information available at the time; I cannot say that about modern Peak Oil theorists who still put out stories intended to scare.

What has changed is that oil production no longer depends only on ‘conventional’ oil supplies but increasingly on ‘unconventional’ resources that are an increasing part of total oil supply. A few definitions, courtesy of Wikipedia, will help:

“Conventional oil is oil that is generally easy to recover, in contrast to oil sands, oil shale, heavy crude oil, deep-water oil, polar oil and gas condensate. Conventional oil reserves are extracted using their inherent pressure, pumps, flooding or injection of water or gas. Approximately 95% of all oil production comes from conventional oil reserves.

Unconventional oil is oil that is technically more difficult to extract and more expensive to recover. The term unconventional refers not only to the geological formation and characteristics of the deposits but also to the technical realisation of ecologically acceptable and economical usage.”

Given these definitions, we can probably all agree that the age of cheap oil is over, as reflected in the following graph of historical oil prices:
image

As reported by former BP geologist Dr. Richard Miller in a speech at University College of London in 2013: “..official data from the International Energy Agency, the US Energy Information Administration, the International Monetary Fund, and other sources, showed that conventional oil had most likely peaked around 2008.” He further pointed out that “peaking is the result of declining production rates, not declining reserves”, that many oil producing countries are already post-peak, and that conventional oil production has been flat since about the middle of the past decade. There has been growth in liquid supply since then, largely due to natural gas liquids and oil derived from oil sands. Reserves have also been growing due to new discoveries, improved oil field extraction technology, and increasing reliance on unconventional resources.
image
image
image

The debate about Peak Oil has been underway for quite a few decades, many words have been spoken and much ink has been used to illuminate and document that debate, and Peak Oil still has its adherents. One of my purposes in exploring this subject for my blog was to review the latest literature and form an updated opinion. I have – Peak Oil is not real if you take into account the full liquid fuels situation. In fact, in the course of my research I have come across several opinions that I fully agree with and share them with you as my summation of this post.

(Wikipedia)”In 2009, Dr. Christoph Rühl, chief economist of BP, argued against the peak oil hypothesis:

Physical peak oil, which I have no reason to accept as a valid statement either on theoretical, scientific or ideological grounds, would be insensitive to prices. (…) In fact the whole hypothesis of peak oil – which is that there is a certain amount of oil in the ground, consumed at a certain rate, and then it’s finished – does not react to anything…. Therefore there will never be a moment when the world runs out of oil because there will always be a price at which the last drop of oil can clear the market. And you can turn anything into oil into if you are willing to pay the financial and environmental price… Global Warming is likely to be more of a natural limit than all these peak oil theories combined. (…) Peak oil has been predicted for 150 years. It has never happened, and it will stay this way.

According to Rühl, the main limitations for oil availability are “above ground” and are to be found in the availability of staff, expertise, technology, investment security, money and last but not least in global warming. The oil question is about price and not the basic availability. Rühl’s views are shared by Daniel Yergin of CERA, who added that the recent high price phase might add to a future demise of the oil industry, not of complete exhaustion of resources or an apocalyptic shock but the timely and smooth setup of alternatives.”

One other opinion I agree with, by George Monbiot, writing in the guardian on 2 July 2012 (‘We were wrong on peak oil. There’s enough to fry us all’): “Some of us made vague predictions, others were more specific. In all cases we were wrong. In 1975 MK Hubbert, a geoscientist working for Shell who had correctly predicted the decline in US oil production, suggested that global supplies could peak in 1995. In 1997 the petroleum geologist Colin Campbell estimated that it would happen before 2010. In 2003 the geophysicist Kenneth Deffeyes said he was “99% confident” that peak oil would occur in 2004. In 2004, the Texas tycoon T Boone Pickens predicted that “never again will we pump more than 82m barrels” per day of liquid fuels. (Average daily supply in May 2012 was 91m.) In 2005 the investment banker Matthew Simmons maintained that “Saudi Arabia … cannot materially grow its oil production”. (Since then its output has risen from 9m barrels a day to 10m, and it has another 1.5m in spare capacity.)

Peak oil hasn’t happened, and it’s unlikely to happen for a very long time.”

Enough said!

Am I Still An Environmentalist?

This piece has been a long time coming. The reason I raise the question is simple: my recent public statements in favor of approving the Keystone XL pipeline and that fracking is here to stay for a while and we need to act accordingly. The question I’ve asked myself is: does taking these positions override a lifelong professional commitment to clean energy and environmental protection in environmentalists’ eyes? In mine it does not. Both positions are strongly opposed by vocal and perhaps significant fractions of the ‘environmental movement’. What that fraction is is not clear. I also wish to offer some unsolicited advice to my fellow environmentalists to help ensure that environmentalism will continue to flourish in the years and decades ahead.

First a little background. I’m a trained scientist (physics) who started thinking about clean energy (solar, wind, ..) in the early 1970s and have spent most of my professional career helping to prepare these technologies for wide scale deployment. I’ve also worked hard to advance energy efficiency as the cornerstone of national energy policy.

My involvement in planning and management of renewable electric programs at the U.S. Department of Energy, from which I retired in 2012, exposed me to some of the less attractive realities of the renewable energy world, such as solar energy advocates denigrating wind energy, and vice versa. I reacted strongly at the time, seeing such self-interested behavior as damaging to the long-term interests of the nation and the renewable energy community. I now fear for the long-term interests of the environmental movement as I see parts of it putting what I consider too much energy into battles that it cannot win. In my opinion this can only harm the movement’s image with the public and thus environmentalism’s needed and long term impacts.

Why do I feel this way? Despite my strong belief that the U.S. must reduce its heavy dependence on fossil fuels as quickly as possible, for environmental, economic and national security reasons, and that we must move as quickly as possible to an energy future based on renewable energy, my sense of reality is that this cannot happen tomorrow and that the public recognizes this, despite their often-repeated enthusiasm for renewables. The public wants leadership and a clean energy future, but it also wants energy, the services energy makes possible, and a realistic path to that future. When environmentalists and others imply that our current dependence on fossil fuels can be undone in a decade or so I take strong issue. It will take decades, even with a willing Congress, and fuels derived from petroleum will still be needed to move our cars and trucks while we move to develop alternative fuels. The Keystone XL pipeline will not reduce Canadian mining and production of its tar sands, the rationale behind environmental opposition to the pipeline, and I’d rather have that oil coming to the U.S. via a modern and highly regulated pipeline than via truck and rail and barge.

We have made significant progress in reducing carbon emissions into the atmosphere by replacing coal with natural gas in power production, but solar and wind and geothermal and biomass and hydropower and ocean energy are not yet ready to take on that full burden. We need natural gas as a transition fuel to our clean energy future, even though its combustion still releases CO2. It is still much better than burning coal, and careful regulation and enforcement of fracking can minimize the amount of natural gas, a powerful greenhouse gas, that leaks into the environment.

Finally, I recommend that my environmental colleagues join with me in putting our energies into making sure that the pipeline and fracking are done as well as possible, that national policies encourage maximum utilization of energy efficiency to minimize energy and water demands, and that a steadily increasing price is put on carbon emissions. All these points are essential, but this latter point to me is critical. Without a clear signal to all sectors of our economy that we must reduce carbon emissions to avoid the worst impacts of global warming and climate change we are being irresponsible to ourselves and succeeding generations. Such a price on carbon can unleash innovation and set an example for the rest of the world which still looks to the U.S. for leadership.

Zero Energy Buildings: They May Be Coming Sooner Than You Think

Buildings account for approximately 40 percent of the energy (electrical, thermal) used in the U.S. and Europe, and an increasing share of energy used in other parts of the world. Most of this energy today is fossil-fuel based. As a result, this energy use also accounts for a significant share of global emissions of carbon dioxide.

image
Source: U.S. Department of Energy, Buildings Energy Data Book

These simple facts make it imperative that buildings, along with transportation fleets and power generation, be primary targets of reduced global energy and fossil fuel demand. This blog post discusses one approach in buildings that is gaining increasing visibility and viability, the introduction of net zero energy buildings and the retrofit of existing buildings to approach net zero energy operation. A net zero energy building (NZEB or ZEB) is most often defined as a building that, over the course of a year, uses as much energy as is produced by renewable energy sources on the building site. This is the definition I will focus on. Other ZEB definitions take into account source energy losses in generation and transmission, emissions (aka zero carbon buildings), total cost (cost of purchased energy is offset by income from sales of electricity generated on-site to the grid), and off-site ZEB’s where the offsetting renewable energy is delivered to the building from off-site generating facilities. Details on these other definitions can be found in the 2006 NREL report CP-550-39833 entitled “Zero Energy Buildings: A Critical Look at the Definition”.

The keys to achieving net zero energy buildings are straight forward in principle: first focus on reducing the building’s energy demand through energy efficiency, and then focus on meeting this energy demand, on an annual basis, with onsite renewable energy – e.g., use of localized solar and wind energy generation. This allows for a wide range of approaches due to the many options now available for improved energy efficiency in buildings and the rapidly growing use of solar photovoltaics on building roofs, covered parking areas, and nearby open areas. Most ZEB’s use the electrical grid for energy storage, but some are grid-independent and use on-site battery or other storage (e.g., heat and coolth).

A primary example of what can be done to achieve ZEB status is NREL’s operational RSF (Research Support Facility) at its campus in Golden, Colorado, shown below.

image

It incorporates demand reduction features that are widely applicable to many other new buildings, and some that make sense for residential buildings and retrofits as well (cost issues are discussed below). These include:
– optimal building orientation and office layout, to maximize heat capture from the sun in winter, solar PV generation throughout the year, and use of natural daylight when available
– high performance electrical lighting
– continuous insulation precast wall panels with thermal mass
– windows that can be opened for natural ventilation
– radiant heating and cooling
– outdoor air preheating, using waste heat recovery, transpired solar collectors, and crawl space thermal storage
– aggressive control of plug loads from appliances and other building equipment
– advanced data center efficiency measures
– roof top and parking lot PV arrays

image

U.S. ZEB research is supported by DOE’s Building America Program, a joint effort with NREL, Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory, and several industry-based consortia – e.g., the National Institute of Building Sciences and the American Institute of Architects. Many other countries are exploring ZEB’s as well, including jointly through the International Energy Agency’s “Towards Net Zero Energy Solar Buildings” Implementing Agreement (Solar Heating and Cooling Program/Task 40). This IEA program has now documented and analyzed more than 300 net zero energy and energy-plus buildings worldwide (an energy-plus building generates more energy than it consumes).

image

An interesting example of ZEB technology applied to a residential home is NREL’s Habitat for Humanity zero energy home (ZEH), a 1,280 square foot, 3-bedroom Denver area home built for low income occupants. NREL report TP-550-431888 details the design of the home and includes performance data from its first two years of operation (“The NREL/Habitat for Humanity Zero Energy Home: a Cold Climate Case Study for Affordable Zero Energy Homes”). The home exceeded its goal of zero net source energy and was a net energy producer for these two years (24% more in year one and 12% more in year two). The report concluded that “Efficient, affordable ZEH’s can be built with standard construction techniques and off-the-shelf equipment.”

image

The legislative environment for ZEB’s is interesting as well. To quote from the Whole Building Design Guide of the National Institute of Building Sciences:
“Federal Net Zero Energy Building Goals
Executive Order 13514, signed in October 2009, requires all new Federal buildings that are entering the planning process in 2020 or thereafter be “designed to achieve zero-net-energy by 2030”. “In addition, the Executive Order requires at least 15% of existing buildings (over 5,000 gross square feet) meet the Guiding Principles for Federal Leadership in High Performance and Sustainable Buildings by 2015, with annual progress towards 100% conformance”.
Two milestones for NZEB have also been defined by the Department of Energy (DOE) for residential and commercial buildings. The priority is to create systems integration solutions that will enable:
Marketable Net Zero Energy Homes by the year 2020
Commercial Net Zero Energy Buildings at low incremental cost by the year 2025.
These objectives align with the Energy Independence and Security Act of 2007 (EISA), which calls for a 100% reduction in fossil-fuel energy use (relative to 2003 levels) for new Federal buildings and major renovations by 2030.”

A word about cost: ZEB’s cost more today to build than traditional office buildings and homes, but not much more (perhaps 20% for new construction). Of course, part of this extra cost is recovered via reduced energy bills. In the future, the zero energy building goal will become more practical as the costs of renewable energy technologies decrease (e.g., PV panel costs have decreased significantly in recent years) and the costs of traditional fossil fuels increase. The recent surge in availability of relatively low cost shale gas from fracking wells will slow this evolution but it will eventually occur. Additional research on cost-effective efficiency options is also required.

To sum up, the net zero energy building concept is receiving increasing global attention and should be a realistic, affordable option within a few decades, and perhaps sooner. ZEB’s offer many advantages, as listed by Wikipedia:
“- isolation for building owners from future energy price increases
– increased comfort due to more-uniform interior temperatures
– reduced total net monthly cost of living
– improved reliability – photovoltaic systems have 25-year warranties – seldom fail during weather problems
– extra cost is minimized for new construction compared to an afterthought retrofit
– higher resale value as potential owners demand more ZEBs than available supply
– the value of a ZEB building relative to similar conventional building should increase every time energy costs increase
– future legislative restrictions, and carbon emission taxes/penalties may force expensive retrofits to inefficient buildings”

ZEB’s also have their risk factors and disadvantages:

“- initial costs can be higher – effort required to understand, apply, and qualify for ZEB subsidies
– very few designers or builders today have the necessary skills or experience to build ZEBs
– possible declines in future utility company renewable energy costs may lessen the value of capital invested in energy efficiency
– new photovoltaic solar cells equipment technology price has been falling at roughly 17% per year – It will lessen the value of capital invested in a solar electric generating system. Current subsidies will be phased out as photovoltaic mass production lowers future price
– challenge to recover higher initial costs on resale of building – appraisers are uninformed – their models do not consider energy
– while the individual house may use an average of net zero energy over a year, it may demand energy at the time when peak demand for the grid occurs. In such a case, the capacity of the grid must still provide electricity to all loads. Therefore, a ZEB may not reduce the required power plant capacity.
– without an optimised thermal envelope the embodied energy, heating and cooling energy and resource usage is higher than needed. ZEB by definition do not mandate a minimum heating and cooling performance level thus allowing oversized renewable energy systems to fill the energy gap.
– solar energy capture using the house envelope only works in locations unobstructed from the South. The solar energy capture cannot be optimized in South (for northern hemisphere, or North for southern Hemisphere) facing shade or wooded surroundings.”

Finally, it is important to note that the energy consumption in an office building or home is not strictly a function of technology – it also reflects the behavior of the occupants. In one example two families on Martha’s Vineyard in Massachusetts lived in identical zero-energy-designed homes and one family used half as much electricity in a year as the other. In the latter case electricity for lighting and plug loads accounted for about half of total energy use. As energy consultant Andy Shapiro noted: “There are no zero-energy houses, only zero-energy families.”